SD150

GETTING STARTED MANUAL

SD150

Getting Started Manual
 Variable Speed Drive

ABOUT THIS MANUAL

PURPOSE

This manual contains important instructions for the installation, configuration and use of Power Electronics SD150 variable speed drives. From now on, this manual refers to SD150 with the term "drive" or "equipment".

Power Electronics reserves the right to modify product features.

TARGET AUDIENCE

This manual is intended for qualified customers who will install, configure and operate Power Electronics SD150 variable speed drives.

Only qualified technical personnel validated by Power Electronics may install and start up the drives.

POWER ELECTRONICS CONTACT INFORMATION

Power Electronics USA Inc.
1510 N. Hobson Street, Gilbert,
Phoenix
AZ 85233
UNITED STATES OF AMERICA
US Sales: 602-354-4890 / (480) 519-5977

Power Electronics España, S.L.
Polígono Industrial Carrases
Ronda del Camp d'Aviació $\mathrm{n}^{\circ} 4$
46160, Llíria (Valencia)
SPAIN
Telephone: (+34) 961366557
Website: www.power-electronics.com

REVISIONS CONTROL

DATE (DD/MM/YYYY) REVISION DESCRIPTION

24/03/2022 A First edition.

The equipment and technical documentation are periodically updated. Power Electronics reserves the right to modify all or part of the contents of this manual without previous notice. To consult the most updated information of this product, you may access our website www.power-electronics.com, where the latest version of this manual can be downloaded. The reproduction or distribution of the present manual is strictly forbidden, unless express authorization from Power Electronics.

TABLE OF CONTENTS

ABOUT THIS MANUAL 2
ACRONYMS 7
SAFETY SYMBOLS 9
SAFETY INSTRUCTIONS 10
TORQUE AND SCREW SIZING 15

1. INTRODUCTION 16
2. CONFIGURATION TABLE \& STANDARD RATINGS 17
Configuration table 17
Standard ratings - 230Vac single-phase. 17
3. TECHNICAL CHARACTERISTICS 18
4. DIMENSIONS 19
Dimensions of frame 1 19
Dimensions of frame 2 20
5. RECEPTION, HANDLING AND TRANSPORTATION 21
Reception 21
Standard storage 21
Extended storage 22
Handling and Transportation 22
6. MECHANICAL INSTALLATION 23
Environmental ratings 23
Drive mounting 24
Clearances 25
Cooling 27
Fan air flow 27
7. POWER CONNECTION 28
Basic configuration 28
Topology 29
Power terminals 29
Power connection and wiring 31
Recommended cable section 32
Ground connection 33
EMC installation requirements 34
Introduction 34
SD150 compliance 35
EMC recommendations 35
Connection 36
Protections 37
Ground fault protection 37
Short circuit 37
Motor thermal protection 37
Others 37
8. CONTROL CONNECTION 38
Wiring recommendations 38
Control cables access 39
Control board terminals description 40
Recommended cable section 42
Control switches 42
9. COMMISSIONING 43
10. MAINTENANCE 45
Warnings 45
Routine inspection 45
11. USE OF THE DISPLAY 48
Integrated display 48
12. WARNING AND FAULT MESSAGES 52
List of fault messages and troubleshooting 52
List of fault messages 52
Fault troubleshooting 53
13. DESCRIPTION OF PROGRAMMING PARAMETERS 55
Group 0: Operation 55
Group 1: Drive \rightarrow dr 57
Group 2: Basic Functions \rightarrow bA 58
Group 3: Expanded Functions \rightarrow Ad 60
Group 4: Control Functions $\rightarrow \mathrm{Cn}$ 63
Group 5: Inputs \rightarrow In 64
Group 6: Outputs \rightarrow OU 66
Group 7: Communication Bus \rightarrow CM 69
Group 8: PID \rightarrow AP 70
Group 9: Protections \rightarrow Pr 72
Group 10: Second Motor \rightarrow M2 75
Group 11: Configuration Mode \rightarrow CF 76
14. MODBUS COMMUNICATION 77
Introduction 77
Communication standards 78
RS485 Connections 79
Supported Modbus function codes 79
Modbus function code № 3: Registers Reading 80
Modbus function code № 16: Registers writing 81
Addressing modes 81
Broadcast addressing mode 81
Summary of Modbus addresses 82
Common area parameter 82
Programming parameters 85
15. COMMONLY USED CONFIGURATIONS 95
Start/Stop command and speed setting from keyboard 95
Parameter configuration 95
Start/Stop command from keyboard and speed setting by analogue input 96
Parameter configuration 96
Connection scheme 97
Start/Stop command from terminals and speed setting by analogue input 98
Parameter configuration 98
Connection scheme 99
Multi-speed commands (multi-step frequencies) using P5, P6 and P7 100
Parameter configuration 100
Connection scheme 102
Constant pressure control and automatic stop at zero level flow 102
Parameter configuration 102
Connection scheme 104
Speed control (up/down potentiometer) and Start/Stop commands by terminals 104
Parameter configuration 104
Connection scheme 106

ACRONYMS

The terms commonly used in the documentation of Power Electronics' products are listed in the table below.

Please notice this is a general series of terms and it encompasses all our product divisions (industrial, solar, storage, and electric mobility), thus, some of the following expressions may not apply to this particular manual.

ACRONYM	MEANING
AASS	Auxiliary Services
AC	Alternating Current
AI	Analogue Input
AO	Analogue Output
BESS	Battery Energy Storage System
BMS	Battery Manager Solution
CCID	Charge circuit interrupting device
CCL	Charge Current Limit.
CCS	Combined charging system - charging and communications protocol following the standard IEC
CHAdeMO	61851-23 Annex CC
CPU	Charging and communications protocol following the standard IEC 61851-23 Annex AA
CC	Direct Current
DCL	Discharge Current Limit
DI	Digital Input
DSP	Digital Signal Processor
DO	Digital Output
EMS	Energy Management System
EV	Electric Vehicle
FPGA	Programmable device (Field-Programmable Gate Array)
FRU	Field Replaceable Unit
GFDI	Ground Fault Detector Interrupter
GPRS	General Packet Radio Services, a data transmission system
HVAC	Heating, Ventilation, and Air Conditioning
IGBT	Insulated Gare Bipolar Transistor
IMI	Insulation monitoring device
IT	Grid system where the power supply is kept isolated and the electrical equipment system is
grounded.	
POTO	Lock Out - Tag Out
PCB	Miniature Circuit Breaker
MPCS	Multi Power Conversion System
MID	Measuring Instrument Directive
MV	Medium Voltage. This term is used to refer to high voltage in general
PE	Ground connection
POI	Point Of Interconnection
PPE	Phorongy

ACRONYM	MEANING
RCM	Residual Current Monitor
RFID	Radio Frequency Identification
SOC	State Of Charge - referred to battery
SOH	State Of Health - referred to battery. It compares the actual state of the battery to its initial conditions. It is measured in percentage
STO	Safe Torque Off
TN	Grid system where the power supply is grounded, and the electrical equipment system is brought to the same ground through the neutral connector.
TT	Grid system where both the power supply and the electrical devices are connected to the ground via separate connections
UPS	Uninterruptible Power Supply
VSD / VFD	Variable Speed Drive, Variable Frequency Drive. Both terms are used

SAFETY SYMBOLS

Always follow safety instructions to prevent accidents and potential hazards from occurring.

In this manual, safety messages are classified as follows:

WARNINGIdentifies potentially hazardous situations where dangerous voltage may be present, which if not avoided, could result in minor personal injury, serious injury or death.
Be extremely careful and follow the instructions to avoid the risk of electrical shocks.
Identifies potentially hazardous situations, which if not avoided, could result in product damage, or minor or moderate personal injury.
Read the message and follow the instructions carefully.

Other symbols used in this manual for safety messages are the following:

Hot surface. Be careful and follow the instructions to avoid burns and personal injuries.

Risk of fire. Be careful and follow the instructions to prevent causing an unintentional fire.

Caution, risk of electric shock. Energy storage timed discharge. Wait for the indicated time to avoid electrical hazards.

Caution, risk of hearing damage. Wear hearing protection.

SAFETY INSTRUCTIONS

IMPORTANT!

Read carefully all documentation before manipulating the equipment and pay special attention to safety recommendations to maximize the performance of this product and to ensure its safe use and installation.

It is the installer's responsibility to follow the instructions provided on this manual, to follow good electrical practices and to identify all mentioned warnings and recommendations before starting up and operating the SD150.

WARNING

Do not remove the cover while the drive is powered or running.
Otherwise, you may get an electric shock.
Do not run the drive with the front cover removed.
Otherwise, you may get an electric shock.
The drive does not remove the voltage from the input terminals of the drive. Before working on the drive, isolate the whole drive from the supply.
If you do not remove the power supply, you may get an electric shock.
Do not remove the cover except for periodic inspections or wiring, even if the input power is not applied.
Otherwise, you get an electric shock.
Operate the drive with dry hands.
Otherwise, you may get an electric shock.
Do not use cables with damaged insulation.
Otherwise, you may get an electric shock.
Do not subject the cables to abrasions, excessive stress, heavy loads, or pinching.
Otherwise, you may get an electric shock.
Do not make any insulation or voltage withstand tests on the motor while the drive is connected.

WARNING

Both wiring and periodic inspections must be carried out at least 10 minutes after disconnecting the input power. To remove the front cover, make sure

10 min that the red "DC Link" LED is off. Then remove the metal cover from the terminals and check the following with a multimeter:

- Voltage between the output busbars U, V, W, and the cabinet is around OV.
- Voltage between the terminals + HVDC, -HVDC and the cabinet is below 30VDC.
If you omit this recommendation, you may get an electric shock.

Even though multimeters have their own revisions Schedule, it is convenient to verify it works properly, specially to check voltage absence. It could be damaged and show incorrect values. Use a 1.5 V battery to verify proper functioning.

CAUTION

Install the drive on a non-flammable surface. Do not place flammable material nearby.
Otherwise, a fire could occur.

Disconnect the input power if the drive is damaged.
Otherwise, it could result in a secondary accident or fire.
Do not allow lint, paper, wood chips, dust, metallic chips, or other foreign matter into the drive.
Otherwise, a fire or accident could occur.

After stopping the drive, some of its parts will stay warm for a while. Wait for the drive to cool down for handling.
Touching hot parts may result in skin burns.

Do not apply power to a damaged drive or to a drive with parts missing, even if the installation is complete.
Otherwise, you may get an electric shock.
It is not allowed to weld the cabinet or structure; this could damage the sensitive electronic components inside the cabinet or structure.

RECEPTION

SD150 drives are delivered tested and perfectly packed.
In the event of damage during transport, please ensure to notify the transport agency and POWER ELECTRONICS: 902402070 (International +34961366557) or your nearest agent, within 24h from receiving the goods.

UNPACKING

Make sure model and serial number of the variable speed drive are the same on the box, delivery note and unit.
Each variable speed drive is delivered with Hardware and Software technical manuals.

RECYCLING

Packaging equipment must be recycled. Separate all different materials (plastic, paper, cardboard, wood...) and place them in the corresponding containers. Ensure waste collection is properly managed with a Non-Hazardous Waste Agent.

To guarantee health and natural environmental sources protection, the European Union has adopted the WEEE directive concerning discarded electric and electronic equipment (SEEA).

Waste of electrical and electronic equipment (WEEE) must be collected selectively for
proper environmental management.

Our products contain electronic cards, capacitors and other electronic devices that should be separated when they are no longer functional. These WEEEs should be managed accordingly with a Hazardous Waste Agent.
Power Electronics promotes good environmental practices and recommends that all its products sold outside of the European Union, once they reach the end of their life, are separated and the WEEE managed according to the particular country applicable legislation (especially: electronic cards, capacitors, and other electronic devices).

If you have any questions about the electric and electronic equipment waste, please contact Power Electronics.

ELECTROMAGNETIC COMPATIBILITY (EMC)

The drive is intended to be used in industrial environment (Second Environment). It achieves compliance with category C3 defined in IEC/EN 61800-3 standard when the installation recommendations within this manual are followed. The driver can optionally operate in domestic environments (First Environment), complying with category C2 defined in IEC / EN 61800-3 standard. For category C1 consult Power Electronics. Optional IT filter.

Select communication and control system according to the drive EMC environment. Otherwise, systems could suffer from interferences due to a low EMS level.

CAPACITORS DEPLETION

If the drive has not been operated for a long time, capacitors lose their charging characteristics and are depleted. To prevent depletion, once a year run the device under no-load conditions during 30-60 minutes.

SAFETY

- Before operating the drive, read this manual thoroughly to gain an understanding of the unit. If any doubt exists, please contact POWER ELECTRONICS, (902 402070 / +34 9613665 57) or your nearest agent.
- Wear safety glasses when operating the drive with power applied or for when the front cover is removed.
- Handle and transport the drive following the recommendations within this manual.
- Install the drive according to the instructions within this manual and the local regulations.
- Do not place heavy objects on the drive.
- Ensure that the drive is mounted vertically and keeping the minimum clearance distances.
- Do not drop the drive or subject it to impact.
- The SD150 drives contain static sensitive printed circuits boards. Use anti-static safety procedures when handling these boards.
- Avoid installing the drive in conditions that differ from those described in the Environmental Ratings section.

CONNECTION PRECAUTIONS

- To ensure a correct operation of the drive, it is recommended to use a SCREENED CABLE for the control wiring.
- The motor cable should comply with the requirements within this manual. Due to increased leakage capacitance between conductors, the external ground fault protection threshold value should be adjusted ad hoc.
- Do not disconnect motor cables if the input power supply remains connected.
- The internal circuits of the SD150 Series will be damaged if the incoming power is connected and applied to output terminals (U, V, W).
- Do not use power factor correction capacitors banks, surge suppressors, or RFI filters on the output side of the drive. Doing so may damage these components.
- Always check whether the "DC Link" red LED is OFF before wiring terminals. The capacitors may hold high-voltage even after the input power is disconnected.
- Do not connect the drive in grids whose THDv is higher than 8%.

COMMISSIONING

- Verify all parameters before operating the drive. Alteration of parameters may be required depending on application and load.
- Always apply voltage and current signals to each terminal that are within the levels indicated in this manual. Otherwise, damage to the drive may occur.
- For correct starting, refer to the start-up section.

HANDLING PRECAUTIONS

- When the "Automatic Restart" function is selected, observe the appropriate safety measures to avoid any damage in case of sudden restart of the motor after an emergency and subsequent reset.
- The "STOP / RESET" key on the driver's own keypad will be operative as long as this option has been selected. By pressing this button, the drive will not perform an emergency stop. The driver has a STO function which, installed with an external EMERGENCY pushbutton, will disconnect the motor power supply and prevent the ability to generate torque in the motor.
- If an alarm is reset without having lost the reference signal (setpoint), an automatic start may occur. Check that the system has not been configured as such. Failure to do so could result in personal injury.
- Do not modify anything inside the driver without the supervision of Power Electronics.
- Before starting the parameter setting, reset all parameters.

EARTH CONNECTION

- Ground the drive and adjoining cabinets to ensure a safe operation and to reduce electromagnetic emission.
- Connect the input PE terminal only to the dedicated PE terminal of the drive. Do not use the case, nor chassis screw for grounding.
- Ground the drive chassis through the labelled terminals. Use appropriate conductors to comply with local regulations. The ground conductor should be connected first and removed last.
- Motor ground cable must be connected to the PE output terminal of the drive and not to the installation's ground. We recommend that the section of the ground conductor (PE) is equal or greater than the active conductor ($\mathrm{U}, \mathrm{V}, \mathrm{W}$).
- If the user decides to use screened motor cable, ensure a good 360° connection of the cable screen in both the drive cabinet and the motor terminal box.

CYBER SECURITY DISCLAIMER

This product is designed to be connected to and to communicate information and data via a network interface. The customer is the sole responsible for providing and continuously ensuring a secure connection between the product and customer network or any other network (as the case may be). Customer shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of antivirus programs, etc.) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information.

Power Electronics and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

TORQUE AND SCREW SIZING

The following table shows, broadly speaking, the recommended tightening torque for both mechanical and electrical connections, applicable to all cabinets ${ }^{[1,2]:}$

SCREW SIZE		RECOMMENDED TORQUE			
METRIC (mm)	ENGLISH (inches)	DIN (Nm)		ASTM (ft* ${ }^{*}$)	
		6,9 QUALITY ${ }^{[a]}$	8,8 QUALITY ${ }^{[a]}$	A449 TYPE ${ }^{[1]}$	A325 TYPE ${ }^{[1]}$
M3	1/8	1	1,3		
M4	5/32	2,5	3	-	
M5	3/16	4	6		
M6	1/4	5	10	4	
M8	5/16	20	25	9	
M10	7/16	40	50	25	
M12	1/2	60	70	38	50-58
M14	9/16	100	120	54	-
M16	5/8	150	210	75	99-120

[a] For other qualities, follow the screw's manufacturer guidelines.

CAUTION

For all screwing that hold a particular component such as a bus, contactor, etc. it will be necessary to apply the tightening torque indicated by the manufacturer of the same component.

Screwing should be tightened correctly only when necessary, i.e. when the factory marks are not in place. For small screws that do not have marks, the good electrical praxis will determine if it is loose.

[^0]
1.INTRODUCTION

The SD150 is a high-performance general purpose AC driver. It excels in demanding heavy-duty applications that require high starting torque and precise control. The dual duty rating of the IP20 models ensures compatibility with all normal duty loads. The versatile SD150 is ideal for applications in water treatment and irrigation, food and beverage, ventilation systems, materials handling, packaging systems, textiles, plastic, wood processing, in fact, any general-purpose application where apparatus and machinery needs to be automated.

Some of its outstanding features are:

- Easy-to-use, compact and robust product, offering users savings in time and space.
- Space saving design with side by side mounting.
- The overall motor control features and the motor/drive protection functions limit unexpected machine downtime.
- A built-in display with keypad offers programming and operation capabilities.
- Integrated communication port and Modbus protocol allows the SD150 to exchange data for machine/process monitoring, control and preventive maintenance.

2.CONFIGURATION TABLE \& STANDARD RATINGS

Configuration table

The following table shows the configuration table for SD150 drives manufactured by Power Electronics:

SERIE	DRIVE CURRENT (NORMAL DUTY)		EMC FILTER	
	003	2 A	F	Extended
	SD150	\ldots	\ldots	-
	12	12 A	-	-

The equipment is coded according to the order in the table above. Some examples are shown below:

- SD1503F: SD150, 3A, EMC extended.
- SD1508F: SD150, 8A, EMC extended.

The following figure shows an example of designation label:

SD150 Series

Standard ratings - 230Vac single-phase

The following table shows the standard ratings frames 1 and 2 for a voltage of 230 Vac single-phase.

IP20			
POWER HD (kW)	CURRENT HD (A)	MODEL	FRAME
0,4	3	SD1503F	1
0,75	5	SD1505F	
1,5	8	SD1508F	2
2	12	SD1512F	

Notes:

- The rated output current is limited depending on the setup of carrier frequency (Cn 4).
- The maximum output voltage cannot exceed the power voltage. The output voltage can be set below the power voltage.
- The output voltage is $20-40 \%$ less than normal when a motor is not connected to protect the driver

3.TECHNICAL CHARACTERISTICS

	Power ranges	$0,4 \mathrm{~kW} \sim 2,2 \mathrm{~kW}-230 \mathrm{~V}$ single phase
INPUT	Voltage range	$230 \mathrm{~V}: 200-240 \mathrm{~V}$ single phase
OMC Filter	C2 (First environment)	

4.DIMENSIONS

The dimensions and weight of the SD150 equipment are detailed in this section.

Dimensions of frame 1

The top, front, and left views of SD150 drives frame 1 are shown below:

$\square \oplus$
SD15DTD001A

DIMENSIONS mm (inch)											WEIGHT kg (lb)
W1	W2	D1	D2	H1	H2	H3	H4	H5	A	\varnothing	
$\begin{gathered} 100 \\ \left(3.94^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 200 \\ \left(7.87^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 148 \\ \left(5.83^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 140 \\ \left(5.51^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{aligned} & 180.5 \\ & \left(7.11^{\prime \prime}\right) \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ \left(0.20^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 190 \\ \left(7.48^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 180 \\ \left(7.09^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{array}{r} 127.5 \\ \left(5.02^{\prime \prime}\right) \\ \hline \end{array}$	$\begin{gathered} 4.5 \\ \left(0.18^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.5 \\ \left(0.18^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 1.45 \\ (3.201 \mathrm{~b}) \\ \hline \end{gathered}$

The following table shows the input voltage for frame 1 equipment:

INPUT VOLTAGE	PHASES	EQUIPMENT
230 V	1	SD1503F, SD1505F

Dimensions of frame 2

The top, front, and left views of SD150 drives frame 2 are shown below:

$\subset \oplus$
SD15DTD002A

DIMENSIONS mm (inch)											WEIGHT kg (lb)
W1	W2	D1	D2	H1	H2	H3	H4	H5	A	\varnothing	
$\begin{gathered} 100 \\ (3.94 ") \end{gathered}$	$\begin{gathered} 90 \\ (3.54 ") \end{gathered}$	$\begin{gathered} 148 \\ \left(5.83^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 140 \\ \left(5.51^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 180.5 \\ & \left(7.11^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 5 \\ \left(0.20^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 190 \\ \left(7.48^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 180 \\ \left(7.09^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 127.5 \\ \left(5.02^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.5 \\ \left(0.18^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.5 \\ \left(0.18^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3.3 \\ (7.27 \mathrm{~b}) \end{gathered}$

The following table shows the input voltage for frame 2 equipment:

INPUT VOLTAGE	PHASES	EQUIPMENT
230 V	1	SD1508F, SD1512F

5.RECEPTION, HANDLING AND TRANSPORTATION

CAUTION

Read carefully the following installation instructions for a correct mechanical installation.
Otherwise, the equipment can be damaged and lead to personal injury.

Reception

Power Electronics' equipment are carefully tested and packed for shipment. In the event of damage to the unit during transportation notify the transport agency and Power Electronics: 902402070 (International +34961366557) or your nearest agent, within 24h from receipt of the goods.

Make sure model and serial number of the drive match the information on the delivery packing list.
The drive should be stored in a location that is protected from direct sun and moisture excess. The storage temperature rating for the drive is $-10^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C},<95 \mathrm{RH}$ without condensation. It is recommended not to stack more than two units.

Standard storage

In case the equipment is stored for a short period (up to 6 months) before its connection, the following rules will keep the unit safe until it is ready for installation:

- The equipment should be stored in a location that is protected from moisture (inside and outside the equipment).
- Avoid floodable grounds. No part of the equipment should ever be submerged under water.
- Temperature in the storage location must be kept between $-20^{\circ} \mathrm{C}$ and $+{ }^{\circ} 65 \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ and $\left.+149^{\circ} \mathrm{F}\right)$.
- Store unit on a flat, even surface.
- Store unit away from high traffic areas where the drive could get damaged.
- Make sure animals cannot get inside the unit.
- Keep doors closed and covers in place during storage.
- Store unit away from corrosive chemical products or gases.
- Keep the equipment packed until the moment of installation.

Extended storage

If the equipment is stored for an extended period (more than 6 months) before installation for an undefined date, new considerations should be taken, in addition to the recommendations in section Standard storage.

- The drive must be stored in its original packaging.
- Draining bags shall be included inside the packaging to prevent moisture from damaging the equipment or its electronic components. These shall be replaced when storage conditions require it.
- Periodic inspections of the internal equipment status should be performed when possible. Proper internal cleanness must also be checked.
- To prevent deterioration of the capacitors, connect the equipment without load for 30-60 minutes once a year.
- Before commissioning, it is recommended to follow the instructions to connect power supply safely to the equipment. Please refer to document VFIC001.

Handling and Transportation

SD150 is delivered horizontally in a cardboard box. Unpack the drive carefully. Do not use sharp tools as they could damage the product. After opening the package, please check the contained goods. Verify the item numbers contained within the package with the packing inventory list. Please remove and set aside any spare parts shipped with the product. There should be no evident damage caused by vibration, dropping or moisture.
To unpack, carefully extract the drive from the box. The drive is packed with its frontal side facing up. Remove and place in its vertical standing position.

CAUTION

If the weight of the load to be handled is greater than the maximum permissible weight of the crane, it could damage the equipment and personnel.

6.MECHANICAL INSTALLATION

CAUTION

The installation must be done by qualified personal.
Otherwise, the equipment can be damaged and lead to personal injury.
Before installation, make sure the location chosen is appropriate. There should be sufficient space to adapt the unit to the recommended distances and to ensure that there are no obstacles preventing the airflow from the fans.

Environmental ratings

Power Electronics recommends following the instructions in this manual carefully to ensure a correct operation of the drive. The installer is responsible for performing a proper installation in order to comply with the ambient conditions of the drive. In addition, the installer is solely responsible for complying with the local regulations. The environmental conditions are:

- Environmental category:	Indoor / Outdoor
- Pollution degree:	PD2
- Ingress protection rating:	IP20 UL open type
- Cooling type:	Natural cooling structure: $0,1-0,2 \mathrm{~kW}$. Forced fan cooling structure: $0,4-2,2 \mathrm{~kW}$.
- Operation Ambient temperature:	$-10 \sim 50^{\circ} \mathrm{C}\left(14 \sim 122^{\circ} \mathrm{F}\right)$ No cold, no frost.
- Storage Ambient temperature:	$-20 \sim 65^{\circ} \mathrm{C}\left(-4 \sim 149^{\circ} \mathrm{F}\right)$
- Humidity:	Relative humidity below $95 \% \mathrm{RH}$ (no dew formation)
- Altitude / Vibration:	Below $1,000 \mathrm{~m}$, below $9.8 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G})$
- Pressure:	$70 \sim 106 \mathrm{kPa}$

Drive mounting

The SD150 variable speed drives are designed to be mounted on a wall or inside a panel. The location must be free from vibration as this may adversely affect the operation of the driver. Furthermore, sufficient space must be ensured to meet the ventilation specifications of the equipment.

The drive can become very hot during operation. Install the drive on a surface that is fire-resistant or flame-retardant and with sufficient clearance around the driver to allow air to circulate. Make sure to follow the clearance recommendations in Clearances section.

Use a level to draw a horizontal line on the mounting surface and mark the fixing points. Then, drill the two upper mounting bolt holes, and then install the mounting bolts. Do not fully tighten the bolts yet. Use the following image as a guide.

Mount the drive on the wall or inside the panel using the top two bolts and then fully tighten the mounting bolts. Ensure that the drive is placed flat on the mounting surface and that the surface can securely support the weight of the drive. Use the following image as a guide.

Note: The quantity and dimensions of the mounting brackets vary based on frame size. Please refer to section Dimensions to find the information that corresponds to your model.

Clearances

The SD150 variable speed drive must be installed vertically, on a wall or inside a panel, with its back side flat on the mounting surface.

The following image and table show the minimum clearance distances for all SD150 variable speed drives.

It is necessary to ensure that there is sufficient air circulation space around the drive when it is installed. If the drive is installed inside a panel or cabinet, consider the position of the drive fan and the ventilation grille. The cooling fan should be positioned so that it effectively transfers the heat generated during drive operation.

SD15DTD005A
If multiple equiment of different sizes are installed, it is necessary to leave sufficient clearance to meet the clearance specifications of the largest drive.

The following figure and table show the minimum clearances for the installation of different frames.

	MINIMUM CLEARANCE							
FRAME	mm (inches)			\quad		A	B	C
:---:	:---:	:---:	:---:					
	$100\left(4^{\prime \prime}\right)$	$50\left(2^{\prime \prime}\right)$	$50\left(2^{\prime \prime}\right)$					
2	$100\left(4^{\prime \prime}\right)$	$50\left(2^{\prime \prime}\right)$	$50\left(2^{\prime \prime}\right)$					

NOTICE

In case several drives are installed in one location, it is necessary to arrange them horizontally and remove their top covers. Use a flat screwdriver to remove the covers.
Otherwise, the equipment may be damaged, and the warranty will be voided.

Cooling

The heat sources inside the equipment correspond to the inverter bridge (IGBT), rectifier bridge and the input filter.

The drive has at least one cooling fan (this varies depending on the drive frame) at the bottom, the hot air is then dissipated through the gratings on the top side.

It is possible to replace the cooling fans without dismounting the whole equipment. To do this, unscrew the screws in the fan corners and disconnect the connector.

(! NOTICE

Ensure that the technical room or cabinet has good air flow, considering that hot air cannot be recirculated by the drive.

Fan air flow

The following table shows the far air flow and the rated speed for frames 1 and 2.

INPUT VOLTAGE		AVERAGE AIR VOLUME (m³/min)		RATED SPEED		FRAME
	CAPACITY	MINIMUM ($\mathrm{m}^{3} / \mathrm{min}$)	NOMINAL ($\mathrm{m}^{3} / \mathrm{min}$)	MINIMUM (m^{-1})	NOMINAL (m^{-1})	
230 V - single phase	0,4 kW	0,21	0,24	7300	8000	1
	0,75 kW					
	1,5 kW	0,53	0,63	4050	4400	2
	2,2 kW					

7.POWER CONNECTION

CAUTION

Please read the following instructions for proper electrical installation.
Otherwise, it could result in damage to equipment and personnel.

(!) NOTICE

Consult the recommended tightening torque for both mechanical and electrical connections in section Torque and screw sizing.

Basic configuration

Select the appropriate safety equipment and perform the wiring properly to ensure proper operation of the equipment. Incorrect application or installation can lead to malfunction of the drive and consequently reduce its life or damage its components. Read and understand this manual thoroughly before performing any operations.

Topology

SD150 drive operates according to the principle of pulse-width modulation (PWM). By varying the power supply voltage and the grid frequency, it is possible to control the speed and torque of the connected induction three-phase motors by means of its main components: rectifier bridge, the DC bus, inverter bridge, and power and control board.

The SD150 includes a gate drive and a control board to control the rectifier thyristor diode's bridge triggering, the inverter IGBT's bridge triggering, the DC bus voltage and the motor performance. In addition, the control board integrates the interface terminals such as communication ports, the digital and analogue inputs and outputs or display among others.

Power terminals

The available power terminals are shown in the figure below. For the power connection, check section Recommended cable section.

	SIGNAL	DESCRIPTION
DYNAMIC BRAKE	B1	Integrated dynamic brake unit.
	B2	
POWER SUPPLY	R(L1)	AC Line Voltage input. Single-phase 230 Vac.
	T(L2)	
MOTOR OUTPUT	U	Motor connection terminals (3-phase, AC $200 \sim 230 \mathrm{~V}$) (3-phase, AC $380 \sim 480 \mathrm{~V}$)
	V	
	W	

To access the power terminals, the user must slide the front cover down while pressing and holding the top centre of the cover. Subsequently, the cover must be removed by lifting it up from the bottom and away from the front of the drive.

The following picture shows the removal of the bottom cover of the drive.

Note: In case the remote keypad is installed, remove the plastic cover under the lower right side of the control terminal cover and connect the remote keypad signal to the RJ- 45 connector.

The power terminals for each frame are shown in the following images:

- Frame 1 ($0,4-0,75 \mathrm{~kW}$)

SD15DTP002A

- Frame 2 (1,5-2,2 kW)

SD15DTP003A

Power connection and wiring

CAUTION

The following installation recommendations are suitable for TN and TT grids. For IT grids, consult Power Electronics. Otherwise, the equipment could be damaged and the risk of injury heightened.

Wiring and periodic inspections must be carried out at least 10 minutes after disconnecting the input power. To remove the front cover, check that the red "DC Link" LED is off. Then remove the metal terminal cover and check the following measurements with a multimeter:

- Check that the voltage between the output terminals, U, V, W and the chassis is around 0 V .
- Check that the voltage between the DC +, - terminals and the chassis is below 30VDC.

Failure to observe this safety recommendation may result in electric shock.

The user input and output busbars are labelled according to the following diagram.

As standard, the input and output terminals are made of tin plated copper. If they are oxidized prior to its installation, the terminals will be poorly connected and this is a cause of overheating. To avoid this effect, clean the terminal lugs and all contact surfaces with ethanol and follow the recommended cable section.

Use insulated ring lugs when connecting the power terminals.

CAUTION

The power supply wires must be connected to terminals R and T. Connecting the power supply wires to terminals \mathbf{U}, \mathbf{V}, and \mathbf{W} will cause internal damage to the driver. Connect the motors to the U, V, and W terminals of the motors. The phase sequence arrangement is not necessary.

Do not connect two wires to a single terminal when making wire connections to the power terminals.

It is necessary that the installer guarantees the correct observance of the law and the regulations that are in force in those countries or areas where this device is going to be installed.

Do not use capacitors for power factor correction, surge suppressors, or RFI filters on the output side of the drive. In doing so, the components could get damaged.

STP (shielded twisted pair) cables must be used to connect the motor to the driver. Do not use 3-core cables. If the driver settings are set to default (switching frequency 3 kHz), make sure that the total cable length does not exceed 50 m .

The voltage drop is defined as:
Voltage $\operatorname{Drop}(V)=[\sqrt{ } 3 X$ cable resistance $(m \Omega / m) X$ cable length $(m) X$ current $(A)] / 1000$

Use cables with the largest possible cross-section to ensure that voltage drop is minimised on long cable runs. Decreasing the carrier frequency and installing a micro surge filter can also help to reduce voltage drop.

DISTANCE	$<50 \mathrm{~m}(165 \mathrm{ft})$	$<100 \mathrm{~m}(330 \mathrm{ft})$	$>100 \mathrm{~m}(330 \mathrm{ft})$
ALLOWED CARRIER FREQUENCY	$<15 \mathrm{kHz}$	$<5 \mathrm{kHz}$	$<2.5 \mathrm{kHz}$

The power cables must have a sufficient power rating in order to prevent overheating and voltage drops. The installer must consider the cable cross-section, cable type, routing method and the ambient conditions to select the appropriate cable. It is only permitted the use of cooper or aluminum cables.

Do not exceed the motor cable distances. Longer cables can cause reduced motor torque in low frequency applications due to the voltage drop, increase circuit susceptibility to stray capacitance which may trigger over-current protection devices or result in a malfunction of the equipment connected to the drive.

Recommended cable section

Power cables must have a sufficient current rating to prevent overheating and significant voltage drops.

Only copper or aluminium cables are permitted

The following tables indicate the cable cross-section at the power for frames 1 and 2 of the SD150 variable speed driver. The installer is responsible for deciding the cross-section, type, wiring method and environmental conditions for selecting the appropriate cable to be installed between the drive and the motor.

The following table shows the power wiring and ground wiring specifications.

LOAD (kW)		GROUND		CABLE ${ }^{1}$				SCREW			TORQUE (Nm)			
		mm^{2}	AWG	mm^{2}		AWG								
		R/T		U/V/W	R/T	U/V/W	R/T	B1/B2	U/V/W	R/T	B1/B2	U/V/W		
230V -Singlephase	$\begin{gathered} 0,4 \\ 0,75 \end{gathered}$		3,5	12	2	2	14	14	$\begin{gathered} \text { M3 } \\ \left(1 / 8^{u}\right) \end{gathered}$	$\begin{gathered} \text { M3 } \\ \left(1 / 8^{\text {a }}\right. \end{gathered}$	$\begin{gathered} \text { M3 } \\ \left(1 / 8^{u}\right) \end{gathered}$	5	5	5
	1,5	3,5	12	3,5	3,5	12	12	M4	M3.5	M3.5	8	0,5	0,5	
	2,2							(5/32")	(9/64*)	(9/64")				

[^1]
Ground connection

Before connecting the power conductors, make sure that the chassis of the drive and the joining cabinets are connected to ground through the dedicated (PE) terminals. These are situated at both sides of the bottom metal walls of the drive, and they are labeled with the earth symbol. Check section Power Terminals.

The motor chassis ground must be connected to the drive. In other words, connect the motor's ground conductor to the PE protection terminal of the drive and not to the installation's ground. It is recommended that the section of the motor ground conductor (PE) has at least the same cross section as the motor power cables sections ($\mathrm{U}, \mathrm{V}, \mathrm{W}$). Additionally, it must be installed following the recommendations indicated in sections Power connection and wiring.

The line ground must be connected to the drive. In other words, connect the installation's transformer ground conductor to the PE terminal of the drive and not to the installation's ground. We recommend that the cross section of the transformer's ground conductor (PE) complies with the IEC 61800-5-1 standard ($10 \mathrm{~mm}^{2}$ for copper cables and $16 \mathrm{~mm}^{2}$ for aluminium cables). Additionally, it should be installed following the recommendations indicated in sections Power connection and wiring.

When connecting the earth, ensure that all connected cable terminals are properly tight and protected from mechanical forces.

Note: Class 3 grounding is required. The earth resistance must be less than 100Ω.

CAUTION

For safety reasons, the earth resistance of the installation must be measured. This must be established before the first start up of the plant and with the drive disconnected.

It is the responsibility of the installer to provide the appropriate number, type and section of cables for the ground conductor in accordance with the characteristics of the equipment used and the plant to minimize ground resistance, which must comply with local and national regulations.

EMC installation requirements

Introduction

The EMC European Directive defines electromagnetic compatibility as the capability of an apparatus, an industrial plant, or a system to work satisfactorily in the electromagnetic environment without at the same time causing electromagnetic disturbances in the apparatus, industrial plant or systems present in the same environment.

The Electromagnetic Compatibility (EMC) depends on two main characteristics of the equipment: Electromagnetic Interference (EMI) and Electromagnetic Susceptibility (EMS). The EMC standards aims to ensure that all the electrical equipment that could operate simultaneously in the same environment are compatible. This means that the interference immunity of all the devices is greater than the interference emission of all the devices within the same environment.

The EMC requirements for Power Drive System (PDS) are defined in IEC/EN 61800-3 standard that is included in the Declaration of conformity CE enclosed. In the European Union, EN61800-3 standard takes priority over all generic standards. The PDS in the context of this standard comprises the drive converter, the motor cables and the motor. Therefore, the installer as the ultimate responsible must follow the installation instructions given within this manual.

Depending on the location of the drive, the standards define four categories distributed in two environments.

- First Environment: Domestic installations. It also includes premises directly connected to a lowvoltage power supply network without an intermediate transformer which supplies buildings used for domestic purposes such as shopping malls, cinemas, hospitals...
- Second environment: Industrial installations. Second Environment includes all plants other than those directly connected to the public low-voltage network which supplies buildings used for domestic purposes, e.g. factories and those other premises supplied by their own dedicated transformer.

The two environments are divided in four categories C 1 to C 4 that are summarized in the following table.

	FIRST ENVIRONMENT		SECOND ENVIRONMENT	
	C1	C2	C3	C4
Restricted installation ${ }^{[1]}$	NO	YES	YES	YES ${ }^{[2]}$

Notes

[1] "Restricted installation" means that the installation and commissioning must be carried out by specialist personnel.
[2] C4 Category applies only for complex systems or when ratings are equal or above to 1000 V or 400 A which are unable to comply with the limits of C3 Category. In these cases, C4 Category can be achieved by adjusting the equipment in situ and applying the EMC recommendations.

SD150 compliance

SD150 variable speed drives have been designed for the industrial use (Second Environment). The implementation of radio frequency interference filters (RFI filters) and dV/dt filters as standard, and the correct installation following the recommendations within this manual, permit to achieve compliance with C2 category defined in IEC/EN 61800-3.

EMC recommendations

To conform the EMC directive, it is necessary that these instructions be followed as closely as possible. Follow the usual safety procedures when working with electrical equipment. All electrical connections to the filter, inverter and motor must be made by a qualified electrical technician.

1. Check the filter rating label to ensure that the current, voltage rating and part number are correct.
2. For best results, the filter should be fitted as closely as possible to the incoming mains supply of the wiring enclousure, usually directly after the enclousures circuit breaker or supply switch.
3. The back panel of the wiring cabinet of board should be prepared for the mounting dimensions of the filter. Be sure to remove any paint etc from the mounting holes and face area of the panel to ensure the best possible earthing of the filter.
4. Mount the filter securely.
5. Connect the mains supply to the filter terminals marked LINE, connect any earth cables to the earth stud provided. Connect the filter terminals marked LOAD to the mains input of the inverter using short lengths of appropriate gauge cable.
6. Connect the motor and fit the ferrite core (output chokes) as close to the inverter as possible. Armoured or screened cable should be used with the 3 phase conductors only threaded twice through the center of the ferrite core. The earth conductor should be securely earthed at both drive and motor ends. The screen should be connected to the enclousure body via and earthed cable gland.
7. Connect any control cables as instructed in Wiring recommendations section, inside Control connection section.

It is important that all lead lengths are kept as short as possible, and that incoming mains and outgoing motor cables are kept well separated.

Connection

The SD150 do not require the use of shielded motor cable to achieve compliance with C2 category when a correct installation is made. Wiring and Installation recommendations are included in sections Power connection and wiring and Ground connection. In shielded cables it is recommended to connect the shield by making 360° contact in both the drive cabinet and the motor terminal box. As an example, EMC cable glands can be installed as shown in the next figure.

MOTOR

It is recommended to use shielded cable for control signals and to follow recommendations included in section Wiring recommendations.

CAUTION

Select communication and control system according to the drive EMC environment. Otherwise, systems could suffer from interferences due to a low EMS level.

Protections

Ground fault protection

The drive is equipped with an internal software that protect the motor and the drive against input and output unbalanced currents. The response threshold can be set from 0% to 30% of the rated current. This function is not intended to protect people against direct or indirect contacts or against fire, so an external protection must be provided to ensure that a substantial ground fault current is promptly interrupted. The SD150 drives are suitable to operate with RCD components Type B, if it is required. The EMC / EMC filters and motor cable lengths increase the earth leakage currents, so the protection range is set according to the installation conditions. For additional information, contact Power Electronics.

Short circuit

The following table shows the voltage, current and inductance specifications of the AC fuses and reactor.

MODEL	AC Input fuse		AC Reactor	
	Current (A)	Voltage (V)	Inductance (mH)	Current (A)
SD1503F	10		1,2	10
SD1505F	600	0,88	14	
SD1508F			0,56	20
SD1512F			0	

CAUTION

Use only UL listed Class H or RK5 input fuses and UL listed circuit breakers. Refer to the table above for fuse and circuit breaker voltages and currents.

Motor thermal protection

The drive includes a motor thermal protection based on the motor performance parameters which mathematically calculates the remaining heating capacity in the motor. When this reservoir is reduced below the limits, this is, the motor temperature approaches the maximum, the drive automatically stops the motor.

The drive includes as standard a PTC connection that permits monitor the motor temperature. Once connected and configured, the drive could either stop the motor or generate a warning signal.

Others

The drive can implement additional motor and drive protections such as power-loss ride through, automatic fly restart, high and low input and output voltage, and/or pump overload and underload among others.

8.CONTROL CONNECTION

Wiring recommendations

Before planning the installation, follow and understand the next recommendations. The parallel cable routing should be avoided and the distance between the control wiring and the power wiring should be maximized. It is recommended to route control cables with different voltages in separately cable racks, trays or ducts.

It is recommended to use shielded cable for all the data, signal or control cables coming from the variable speed drive. Each cable must have an EMC clip that secures an effective ground shield, making a contact of the 360° shield.

Cable shields for digital signal must be grounded at both ends of the cable. It is recommended to use independent shielded cables for digital and analogue signals. When using multiple analogue signals, do not use common return for them. If using analogue signals, a low interference is experienced (hum loops), disconnect the shield grounding from one of the ends. Refer to Recommended cable section for cable specifications and recommended adjustment.

Although the control boards are insulated galvanically, for safety reasons it is recommended not to modify the wiring while the equipment is connected to the input power supply.

CAUTION

Any change to the control board wiring or bridges must be performed following the safety instructions indicated before. Otherwise, it could cause damage to the equipment and cause damage to people.

Control cables access

The control cables must be connected to the control terminals located below the seven-segment display. Remove the front cover by pressing the cover outwars to access the control terminals. The following figure shows the detail of the front cover.

Once the front cover is removed, the control terminals for both frames are shown. The following figure shows in detail the control terminals located on the front of the equipment.

Control board terminals description

The control board of the drive integrates some switches and connection terminals. These connection terminals vary depending on the equipment's degree of protection.

The following figures show the control board terminals schema:

SD15DTC002AI

The following figure shows the control terminals for IP20 drives. This configuration applies to both frames.

The following table contains the control terminals description:

SIGNAL	PIN	DESCRIPTION
DIGITAL INPUTS	P1	Configurable multi-function Input. Default value: Fx.
	P2	Configurable multi-function Input. Default value: Rx.
	P3	Configurable multi-function Input. Default value: Emergency stop trip.
	P4	Configurable multi-function Input. Default value: Fault reset (RESET).
	P5	Configurable multi-function Input. Default value: Jog operation command (JOG).
	CM	Common terminal for analog terminal inputs and outputs.
ANALOGUE INPUTS	VR	Used to setup or modify a frequency reference via analog voltage or current input. - Maximum voltage output: 12 V . - Maximum current output: 100 mA . - Potentiometer: 1-5 k Ω.
	V1	Used to setup or modify a frequency reference via analog voltage input terminal. - Unipolar: 0-10 V (12 Vmax.).
	12	Used to setup or modify a frequency reference via the voltage or current analogue input terminals. Switches between voltage (V2) and current (I2) modes via a switch on the control board (SW2). \checkmark mode: - Unipolar: 0-10 V (12 Vmax.). I mode: - Input current: 4-20 mA.
ANALOGUE OUTPUTS	AO	Used to send output information from the drive to the following external devices: output frequency, output current, output voltage, or a DC voltage. - Output voltage: 0-10 V. - Maximum output voltage/current: $10 \mathrm{~V}, 10 \mathrm{~mA}$. - Default output: Output frequency.
DIGITAL OUTPUTS	Q1	Multifunction terminal DC 26V, $\leq 100 \mathrm{~mA}$.
	EG	Common ground contact for an open collector (with external power source).
	24	External 24 V power source. 150 mA máximum output current.
	A1	Sends out alarm signals when the safety functions of the drive are activated (AC 250 V
	C1	$<1 \mathrm{~A}, \mathrm{DC} 30 \mathrm{~V}<1 \mathrm{~A})$
	B1	- Fault condition: A1 and C1 contacts are connected (B1 and C1 connected). - Normal operation: B1 and C1 contacts are connected (A1 and C1 open).
	A2	Sends out alarm signals when the safety functions of the inverter are activated
	C2	- Fault condition: contacts A2 and C2 are connected. - Normal operation: contacts A2 and C2 are open connection.
COMMUNICATION	RJ45	Remote keypad signal line. Used to send or receive the remote keypad signal (optional).
		RS-485 signal line. Used to send or receive RS-485 signals.

Recommended cable section

The recommended wire characteristics are summarized in the table below. The wire length of the safety input should not exceed 30 m .

TERMINAL TYPE	RECOMMENDED WIRE SIZE ${ }^{1}$ ($\mathrm{mm}^{2} / \mathrm{AWG}$)				SCREW	TORQUE (Nm)
	NO CRIMP-STYLE TERMINAL		CRIPM-STYLE			
	mm^{2}	AWG	mm^{2}	AWG		
P1-P5, CM	0,75	18	0,5	20	M2 (1/32")	0,22~0,25
VR						
V1						
12						
AO						
Q1						
EG						
24						
A1, B1, C1	1	17		15		
A2, C2					M2.6 (3/32)	0,4

Control switches

There are three control switches, one for the PNP/NPN mode, one for analog input and one for the terminal resistor.

The switches are described in the following table.

	SWITCH	OPTIONS	DESCRIPTION
SW1	PNP/NPN	PNP/NPN	NPN/PNP mode selection switch.
SW2	ANALOG INPUT	V/I	Analog voltage/current input terminal selection switch.
SW3	TERMINAL RESISTOR	ON/OFF	Terminal resistor selection switch.

[^2]
9.COMMISSIONING

CAUTION

Only qualified personnel are allowed to commission the drive. Read carefully and follow the safety instructions of this manual.
Failure to do so may result in damage to the equipment and you may suffer an electric shock.
Make sure that there is no voltage at the power terminals. Make sure that voltage is not connected to the computer unexpectedly.

This section does not include all the tasks to be performed during the commissioning of the equipment. Follow local and national regulations.

If the equipment is stored for an extended period (more than 6 months) before installation, the recommendations from section "Extended storage" must be taken into account.
Ensure all the instructions on such section have been followed before starting the commissioning of the equipment.

For a proper commissioning, follow the next steps:
Check the compatibility of the upstream protections (circuit breakers, fuses, etc...) that could cause an unexpected stop during the soft charge.

Start the drive without the motor connected by pressing the "RUN" button on the display keypad.

Check that the fans rotate smoothly and there is no obstacle reducing the cooling capacity. Verify that there are no ibstructing elements that could affect equipment cooling.
Conect on the motor and check its direction of rotation.
Verify that the drive follows the set parameters of speed, current, etc.

10. MAINTENANCE

The SD150 series drives are industrial electronic products that contain advanced semiconductor elements. For this reason, temperature, humidity, vibrations and worn components can affect performance. To avoid any possible irregularities, it is recommended to carry out periodic inspections.

WARNING

Ensure to follow all instructions to safely carry out maintenance tasks.
Otherwise, you could cause damages to the equipment and personnel.

Warnings

Make sure to remove the input power while performing maintenance.
Make sure to perform maintenance after checking the DC Link capacitor has discharged. Check that the voltage between terminals +HVDC and -HVDC is below DC 30V. The bus capacitors in the drive main circuit can still be charged even after the power is turned off.

The correct output voltage of the drive can only be measured by using an RMS voltage meter. Other's voltage meters, including digital voltage meters, are likely to display incorrect values caused by the high frequency PWM output voltage of the drive.

Routine inspection

It is necessary to perform periodic inspections of the drive. The frequency of the tasks shown in the table below are recommended, the times indicated depend on the working conditions in each case.

Tasks with monthly recommendation must be performed, at least, every three months.
Make sure to check the following points before handling the drive:

- Installation site conditions.
- Drive cooling system conditions.
- Excessive vibrations or noise in the motor.
- Excessive overheating.
- Normal output current value on the monitor.

	Inspection element	Inspection	Period			Inspection method	Criterion	Instrument of Measurement
All	Ambient conditions	Are there dust particles? Are the ambient temperature and the humidity within specification?	0			Visual check	Temperature: -30 to $+50\left(\right.$ or $40^{\circ} \mathrm{C}$) Humidity: below 95\% non-condensing.	Thermometer, Hygrometer, Recorder.
	Module	Are there any abnormal noises or oscillations?	0			Visual and audible.	There are no anomalies.	
	Input power	Is the input power to the main circuit correct?	0			Measure the voltage between terminals L1, L2 and GND.		Digital multimeter. Tester.
	Power connections	Are the Power terminals correctly fastened?		0		Measure the temperature and torque of the power connections	Fasten the bolts again one week after its startup. Check that the temperature is homogeneous and below $70^{\circ} \mathrm{C}$	Infrared thermometer, Torque key
	Conductor/ Cable	Is the conductor corroded? Is the sheathing of the cable damaged?		0		Visual check.	No anomaly.	
	Terminal	Is any damage visible?		0		Visual check.	No anomaly.	
	IGBT's module Diodes module and Rectifier	Check the resistance value between each one of the terminals			0	Disconnect the cables of the inverter and measure the resistance value between: L1, L2 \Leftrightarrow VDC+, VDC- and $\mathrm{U}, \mathrm{V}, \mathrm{W} \Leftrightarrow \mathrm{VDC}+$, VDCwith a tester $>10 \mathrm{k} \Omega$		Digital multimeter. Analogue tester.
	Correct capacitor	Have fluid leakages been observed? Is the capacitor well fastened? Is any dilation or retraction sign observed? Measure the capacitance	0 0	0		Visual check. Measure the capacitance with a proper instrument.	No anomaly Capacitance higher than 85% of rated capacitance.	Instrument for measuring capacity.
	Input Inductances	Is there any liquid leak? Is there any overheated point?		0 0		Visual check. Measure the surface and connectors' temperature.	No anomaly. Check that the temperature is homogeneous and below $70^{\circ} \mathrm{C}$	Infrared thermometer.
	Contactor	Is there any contactor chatter? Is the contact damaged?		0 0		Audible check. Visual check.	No anomaly.	
	Operating check	Is there any imbalance between output voltage phases?		0		Measure voltage between output terminals U, V and W .	Balanced voltage between phases i.e. lower than 8 V difference for 400 V models.	Digital multimeter / RMS voltage meter.
	Cooling fans	Are there any abnormal noises or oscillations? Is the cooling fan disconnected?	0	0		Disconnect the power supply (OFF) and rotate the fan manually. Check the connections.	Fan should rotate effortlessly. No anomaly.	
	Dust filters	Are the dust filters obstructed?		0		Visual check	No anomaly	

	Inspection element	Inspection	Period			Inspection method	Criterion	Instrument of Measurement
			$\begin{aligned} & \text { 츨 } \\ & \text { 苍 } \\ & \text { D } \end{aligned}$		$\begin{aligned} & \stackrel{\varrho}{\omega} \\ & \stackrel{y}{\omega} \\ & \stackrel{N}{\sim} \end{aligned}$			
$\frac{\text { 증 }}{\stackrel{0}{0}}$	Measurement	Is the displayed value correct?	0	0		Check the reading instrument with an external measurement.	Check the specified values and the control values.	Voltage meter / Current meter etc.
$\frac{\vdots}{\grave{0}}$	All	Is there any noise or abnormal vibrations? Has any unusual smell been perceived?	0 0			Audible, sensory and visual check. Check if damages have been produced by overheating.	No anomaly.	
	Insulation resistance	Megger check (between terminals of output circuit and ground terminal)			0	Disconnect the cables U, V and W and join them together. Check the resistance between this join and ground.	More than $5 \mathrm{M} \Omega$	$\begin{aligned} & \text { Megger type } \\ & 500 \mathrm{y} \end{aligned}$

Note: Long life of the main components above indicated are based on a continuous operation for the stipulated load. These conditions can change according to the environment conditions.

11. USE OF THE DISPLAY

The SD150 variable speed drive has an integrated built-in seven segment display which provides intuitive data presentation, easy navigation through the control parameters and allow thousands of customized configurations to be stored by the user.

Integrated display

The figure below shows the integrated display in the drive. There are four indicators that provide information on the operating status of the device, as well as six control keys and a potentiometer for setting the frequency of operation.

SD15DTG001AI
The LED indicators turn on or flicker, showing the current operation status of the drive. The following table lists the names and functions of the operating keys on the display:

KEY / LED	FUNCTION
RUME	RUN key
RUN command.	

KEY/LED	NAME	FUNCTION
FWD	FWD indicator	Illuminated and remains steady during forward run.
REV	REV idicator	Illuminated and remains steady during reverse run.
Seven- segment display	Current value	Indicates operating conditions and parameter data.

The following table shows the different characters of the seven-segment display:

Display	Number/ character						
\square	0	9	A	\underline{L}	K	'11	U
1	1	b	B	i	L	$\xrightarrow{1}$	V
\square	2	F-1	C	$\overline{11}$	M	-1	W
3	3	-	D	Π	N	4	X
4	4	E	E	8	O	U	Y
5	5	F	F	\square	P	三	Z
5	6	5	G	9	Q	1	0 (bit)
7	7	H	H	r	R	1	1 (bit)
8	8	'	I	5	S	-	-
9	9	-	J	E	T	-	-

The groups, except for the operation group, are not displayed in the group list and are not accessible according to the factory defaults. To display and access all groups, it is necessary to access code 0 Gr in the Operation group and set the parameter to 1.

The following table shows the steps to follow in order to move between groups in one direction only:

STEP	INSTRUCTION	KEYPAD DISPLAY
1	0.00^{1} is the initial code of the Operation group. It is displayed when the inverter is turned on. Press the [MODE] key.	
2	The initial code of the Drive (dr) group displayed on the screen is dr 0 . Press the [MODE] key.	
3	The initial code of the Basic (bA) group displayed on the screen is bA 0 . Press the [MODE] key.	皇㤩
4	The initial code of the Advanced (Ad) group displayed on the screen is Ad 0 . Press the [MODE] key.	Frrarin
5	The initial code of the Control (Cn) group displayed on the screen is Cn 0 . Press the [MODE] key.	
6	The initial code of the input terminal displayed on the screen is $\ln 0$. Press the [MODE] key.	
7	The initial code of the output terminal displayed on the screen is $\ln 0$. Press the [MODE] key.	-1018
8	The initial code of the Communication (CM) group displayed on the screen is CM 0 . Press the [MODE] key.	Frrrirs
9	The initial code of the Application (AP) group displayed on the screen is AP 0 . Press the [MODE] key.	Frars
10	The initial code of the Protection (Pr) group displayed on the screen is $\operatorname{Pr} 0$. Press the [MODE] key.	Frars
11	The initial code of the Secondary Motor group displayed on the screen is M2. This group is available when the secondary motor function is enabled. To enable the secondary motor function, set one of the multi-function input terminal's codes to 12. Press the [MODE] key.	$\begin{array}{ll} -\pi & 9 \\ 112 & 6 \end{array}$
12	The initial code of the Configuration (CF) group displayed on the screen is CF 0 . Press the [MODE] key.	FFr
13	Press the [MODE] key at the Configuration group. The initial code of the Operation group will be displayed: 0.00 .	

[^3]The following table shows two examples to learn how to switch and navigate between codes:

STEP	INSTRUCTION	KEYPAD DISPLAY
1	Move up and down within a group of parameters using the keys $[\boldsymbol{\Delta}]$ and $[\mathbf{V}]$.	
2	Move up and down through the different codes using the keys [$\mathbf{\Lambda}$] and $[\mathbf{V}]$.	
3	Press the [ENT] key to sabe the changes.	

Binary numbers are shown in the integrated display as segment lines. " 1 " is displayed in the top part of the display and " 0 " in the bottom part. For example, " 010 " is represented as:

12. WARNING AND FAULT MESSAGES

List of fault messages and troubleshooting

The variable speed drive stops when it detects a fault or when it sends a warning signal. The keypad displays information when a trip or warning message occurs. If more than two trips occur within a short period of time, the keypad displays the highest priority fault trip information.

The List of fault messages section shows a list of all possible faults. The probable causes and troubleshooting for each fault are listed in section Fault troubleshooting.

List of fault messages

The following table shows the protection functions for output current and input voltage, as well as the protection functions for abnormal conditions of the internal circuit and external signals.

SCREEN DESCRIPTION

Overload. The drive stops when the motor overload trip is activated, and the actual load level exceeds the set level. The protection operates if $\operatorname{Pr} 20$ has been set to a value other than 0 .

Overcurrent. The drive trips when the output current exceeds the 200% of the rated current value.

Overvoltage. The fault appears when the internal $D C$ circuit voltage exceeds the specified value.

Low voltage. The drive trips when the internal DC circuit voltage is less than the specified value.

Ground Trip. The fault appears when a ground fault trip occurs on the output side of the driver and causes the current to exceed the specified value. The specified value varies depending on driver capacity.

E-Thermal. The fault appears depending on the inverse time-limit thermal characteristics to prevent motor overheating. Operates when $\operatorname{Pr} 40$ is set to a value other than 0 .

Out Phase Open. The fault appears when a 3-phase output has one or more phases in an open circuit condition. Operates when bit 1 of $\operatorname{Pr} 5$ is set to 1 .

Inverter Overload. The fault appears when the inverter has been protected from overload and resultant overheating, based on inverse timelimit thermal characteristics. Allowable overload rate for the drive is 150% for 1 min .

ROT. The falut appears when the input power is unstable, or an initial charging circuit trip occurs while supplying power to the inverter. This trip occurs only in the $0,4-2,2 \mathrm{~kW}$ models. There is a possibility of ROT trip when power is turned on within 1 second after LVT trip due to power OFF.
Underload. The motor is working with insufficient load. The drive trips when its current is within the values set in parameter $\operatorname{Pr} 29$ and $\operatorname{Pr} 30$ exceeding the time limit set in parameter Pr 28. The protection will be enabled if the parameter $\operatorname{Pr} 27$ has been set with a value different to 0 ' $N O N E$ '.

Overheat. The fault appears when the temperature of the inverter heat sink exceeds the specified value.

SCREEN DESCRIPTION

NTC．The fault appears when an error is detected in the temperature sensor of the Insulated Gate Bipolar Transistor（IGBT）．

Fan trip．An anomaly detecting within the cooling fan．The cooling fan trip can be occurred when
F月．a it is overloaded，its connectors are disconnected，or its components break．When the problems are solved，fan trip is cleared，and the fan operates normally．
External trip A，B．When the multi－function input terminal of the I／O is set to EtA or EtB，the input terminal is used as the signal：

ELb
ERG
－EtA．This fault is displayed when the CM and short signal are generated when the multi－ function input is NPN or P24 and the short signal is generated when multifunction input is PNP．
－EtB．This fault is displayed when the CM and open signal are generated when multi－ function input is NPN or P24 and open signal is generated when multi－function input is PNP．

［0，

Communication trip．This fault appears when communication between the Main DSP and the IO
CPU is disconnected for more than 500 ms ．
nine
Nbr．This fault appears when the inverter＇s output current is below the value set at Ad 41 during the external brake signal operation based on the multi－function terminal function setting．

Fault troubleshooting

The following table shows the possible causes and actions for a trip or warning due to a protective function．

SCREEN	DESCRIPTION OR POSSIBLE CAUSE	ACTIONS
Cit	Elevated motor consumption caused by an excessive load．	Ensure that the motor and the drive have the correct rated capacities．
	Load defined in parameter Pr 21 is too low．	Increase the defined value in parameter $\operatorname{Pr} 21$.
GEL	The acceleration or deceleration time is too short compared to the inertia of the load（bA 16）．	Increase acceleration or deceleration time．
	The drive load is greater than the rated capacity	Replace the drive with a higher capacity model．
	The drive provides an output while the motor was idling．	Operate the drive after the motor has stopped or use the speed search function Cn 71 ．
	The mechanical brake of the motor is operating too fast．	Check the mechanical brake．
「いに	The deceleration time is too short compared to the inertia of the load（bA 16）．	Increase the acceleration time．
	A generative load occurs at the drive output．	Use the braking unit．
	The input voltage is too high．	Check if the input voltage is above the specified value．
－いし	The input voltage is too low．	Determine if the input voltage is below the specified value．Set the value of the input voltage of the drive bA 19.
	A load in excess of the power capacity is connected to the system．	Increase the power capacity．
	The magnetic contactor connected to the power supply has a faulty connection．	Replace the magnetic contactor．
5\％	Ground leakage produced in the drive output．	Check the drive output wiring．
	The motor insulation is damaged due to heat．	Change the motor．

SCREEN	DESCRIPTION OR POSSIBLE CAUSE	ACTIONS
	Motor overheated.	Reduce the load or frequency of operation.
ELH	Load exceeds the drive capacity.	Replace the drive with a higher capacity model.
	The drive operates at low speed for an extended period of time.	Replace the motor with a model that supplies additional power to the cooling fan.
「9\%	The magnetic contactor on the output side has a connection fault.	Check the magnetic contactor on the output side.
	The output wiring is faulty.	Check the output wiring.
(17)	The load within the drive is greater than the rated value of the drive.	Increase the motor and drive capacity.
	The start torque setting is too high.	Reduce the start torque value.
CHL	There is a problem with the cooling system.	Check whether a foreign object is obstructing the air inlet, outlet or ventilation.
	The cooling fan of the drive operates for an extended period of time.	Replace the cooling fan.
	The ambient temperature is too high.	Keep the ambient temperature below $50^{\circ} \mathrm{C}$.
\cdots	The ambient temperature is too low.	Keep the ambient temperature above $-10^{\circ} \mathrm{C}$.
	There is a fault with the internal temperature sensor.	Contact with Power Electronics.
FRin	Foreign object obstruction in ventilation.	Remove the foreign object from the air inlet or outlet.
	The cooling fan needs to be replaced.	Replace the cooling fan.
-T\%	The input power is unstable, or a disconnection of the initial load circuit occurs while power is being supplied from the driver.	Disconnect and reconnect the power supply. If the problem persists, contact with Power Electronics.

13. DESCRIPTION OF PROGRAMMING PARAMETERS

The different parameters of the SD150 are organized in groups and are described within this section.
Use the up and down $\underbrace{}_{\text {keys to navigate between the parameters of the selected group. }}$
Please refer to section Integrated display, for instructions on how to modify parameter values.

Group 0: Operation

This group is only available in the integrated display. It allows performing a basic set up of the drive with its main parameters.

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE	FUNCTION
0.00	Command frequency	0.00 Hz	0.00 to 400.00 Hz	Sets and modifies a frequency reference for an operation. See parameter (Frq).
ACC	Acceleration time	5.0 s	0.0 to 6000 s	The setting range varies depending on the set value of code bA 8. See group Basic functions (bA). Parameters bA 8 and bA 9.
dEC	Deceleration time	10.0 s		
drv	Start/stop control	1	0 to 3	Selects the command source according to the following table:
				OPT. DESCRIPTION $^{\text {O }}$
				0 Keypad
				1 Fx/Rx-1
				$2 \quad \mathrm{Fx} / \mathrm{Rx}-1$
				3 RS-485 communication.
Frq	Frequency setting mode	0	0 to 10	Selects the frequency setting method according to the following table:
				OPT. DESCRIPTION
				0 Keypad 1
				1 Keypad 2
				$2 \mathrm{~V} 0: 0-5 \mathrm{~V}$
				$3 \mathrm{~V} 1: 0-10 \mathrm{~V}$
				$4 \quad \mathrm{I}$ (I): $0-20 \mathrm{~V}$
				$5 \quad \mathrm{I}$ (I): $0-10 \mathrm{~V}$
				$6 \quad \mathrm{~V} 0+\mathrm{I} 2(\mathrm{I})$
				$7 \quad \mathrm{~V} 0+12$ (V)
				8 V0 + V1
				9 RS-485 communication
				10 Up - Down operation
MkW	Motor rated power	-	0.4 to 2.2 kW	Selects the motor according to the following table:
				OPT. DESCRIPTION
				0.40 .4 kW
				0.75 0.75kW
				1.1 1.1kW
				1.5 1.5kW
				2.2 2.2kW
MrC	Rated motor current	-	0.1 to 150.0 A	The initial value varies depending on the setting of the motor capacity (MkW). See group Basic functions (bA), parameters bA 14, bA 15 and bA 16.
MbF	Motor base frequency	60.00 Hz	30.00 to 400.00 Hz	The base frequency refers to the output frequency of the driver when operating at its rated voltage. Refer to the motor nameplate to set the value of this parameter.
FrM	Maximum frequency	60.00 Hz	40.00 to 400.00 Hz	Sets the upper limit value for parameters that are expressed as a unit of frequency, except for MbF (base

| SCREEN | DESCRIPTION | DEFAULT
 VALUE | RANGE | FUNCTION |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| IOv | Output voltage
 setting | 0 V | | frequency). It is not possible to set the frequency value
 above the maximum frequency within this function. |
| This function is used when a motor is operated with a | | | |
| voltage lower than the input voltage. | | | | |

Group 1: Drive \rightarrow dr

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE		FUNCTION	SET ON RUN
dr 0	Jump Code	9	0 to 81	Allows to navigate between the different parameters.		YES
dr 9	Control mode	1	0 to 1	Configur OPT. 0 1	the control mode for controlling the drive. DESCRIPTION V/F schedule control. Slip compensation control	YES
dr 11	Jog frequency	10.00 Hz	$\begin{gathered} 0.00 \mathrm{~Hz} \text { to } \\ \text { FrM } \end{gathered}$	This operation is the second highest priority operation. If a Jog operation is requested while operating in multistep, up-down or 3 wire modes of operation, the Jog operation overrides all other modes of operation.		YES
dr 15	Torque boost	0	0 to 1	Allows th torque.	output voltage to be adjusted from the motor	YES
dr 19	Start frequency	0.50 Hz	$\begin{gathered} 0.10 \mathrm{to} \\ 10.00 \mathrm{~Hz} \end{gathered}$	Sets the start of the frequency. Corresponds to the frequency at which the driver starts the voltage output.		NO
dr 20	Select rotation direction	F	-	Applies only when drv (source control mode) is set to 0 . It is possible to display and set the dr 20 setting when drv (source control mode) is set to a value other than 0.		YES
dr 26	Automatic torque boost filter gain	2	1 to 1000	They can be adjusted by increasing the voltage to the output voltage by the torque current when the voltage is too low to start operation of the V/F pattern. When the starting torque is too low or too high, parameters dr 27 and dr 28 (automatic torque boost voltage gains) can be used to adjust the compensation according to the load. They are enabled only when dr 15 (torque boost) is set to 1 .		NO
dr 27	Automatic torque boost motoring gain	120.0\%	$\begin{gathered} 0.0 \text { to } \\ 300.0 \% \end{gathered}$			
dr 28	Automatic torque boost regeneration gain	120.0\%	$\begin{gathered} 0.0 \text { to } \\ 300.0 \% \end{gathered}$			
dr 81	Select monitor code	0	0 to 4	Sets the monitor code.		YES
				OPT.	DESCRIPTION	
				0	Output voltage vOL [V]	
				1	Output power (POr) [kW]	
				2	Torque (tOr) [kgf*m]	
				3	Analog V1 terminal input [v1M].	
				4	Analog 12 terminal input (I2M) [mA / V]	
dr 85	Read parameters	No	-	Indicates the reading status of the parameters.		YES
				OPT.	DESCRIPTION	
				No	No parameters reading.	
				Yes	Parameters reading.	
dr 86	Write parameters	No	-	Indicates the writing status of the parameters.		YES
				OPC.	DESCRIPTION	
				No	No parameters writing.	
				Yes	Parameters writing.	
dr 91	Smart copier	0	0 to 3	Indicates the status the smart copier.		NO
				OPT.	DESCRIPTION	
				0	None	
				1	Reserved	
				2	Reserved	
				3	SmartUpLoad	

Group 2: Basic Functions \rightarrow bA

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE		FUNCTION	SET ON RUN
bA 0	Jump Code	19	0 to 83	Allows to navigate between the different parameters.		YES
bA 41	Command source 2	1	0 to 3	Allows the parameter setting of the second command source to be changed via the multifunction terminals.		NO
				OPT.	DESCRIPTION	
				0	Keypad 1	
				1	Fx/Rx-1	
				2	Fx/Rx-2	
				3	RS-485 communication	
bA 5	Frequency source 2	0	0 to 10	Allows the parameter setting of the second frequency source to be changed via the multifunction terminals.		YES
				OPT.	DESCRIPTION	
				0	Keypad 1	
				1	Keypad 2	
				2	V0: 0-5 V	
				3	V1: 0-10 V	
				4	12 (I): $0-20 \mathrm{~mA}$	
				5	$12(\mathrm{~V}): 0-10 \mathrm{~V}$	
				6	Volume +12 (I)	
				7	Volume + I2 (V)	
				8	Volume + V1	
				9	RS-485 communication	
				10	Up-down operation	
bA 7	V/F pattern	0	0 to 2	Configures the drive to increase or decrease the output voltage at a fixed rate for different operating frequencies depending on the V/F characteristics. Note: When a normal induction motor is used, make sure that the output pattern is not set far from a linear V/F pattern. Non-linear V/F patterns may cause insufficient motor torque or motor overheating due to overexcitation.		NO
bA 8	Unit of acc/dec time setting	1	0 to 2	Sets the time scale. The time values can be set according to the maximum frequency, not the drive operation, starting from bA 9 .		NO
				OPT.	DESCRIPTION	
				0	0.01-20.0 s	
				1	0.1-6000.0 s	
				2	1-60000 s	
bA 9	Acc/dec frequency reference	0	0 to 1	Sets the acceleration and deceleration frequency reference.		NO
				OPT.	DESCRIPTION	
				0	Maximum frequency (FrM)	
				1	Delta frequency	
bA 11	Number of motor poles	4	2 to 12	Adjusts the number of poles on the motor according to its nameplate.		NO
bA 12	Motor no load current	-	$\begin{gathered} 0.00 \mathrm{to} \\ 10.00 \mathrm{~Hz} \end{gathered}$	These parameters ensure that the engine rotates at a constant speed, compensating for engine slip as the load increases.		NO
bA $14{ }^{2}$	Motor efficiency	-	$\begin{gathered} 0.1 \text { to } \\ 100.0 \mathrm{~A} \end{gathered}$			NO
bA $15{ }^{1}$	Motor efficiency	-	50 to 100\%	Adjusts the efficiency of the motor according to its nameplate.		NO
bA 16	Load inertia rate	0	0 to 2	Selects the load inertia based on the motor inertia.		NO
				OPT.	FUNCTION	
				0	Less than ten times motor inertia.	
				1	Ten times motor inertia.	
				2	More than ten times motor inertia.	

[^4]

Group 3: Expanded Functions \rightarrow Ad

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE	DESCRIPTION	SET ON RUN
Ad 0	Jump Code	24	0 to 79	Allows to navigate between the different parameters.	YES
Ad 1	Acceleration pattern	0	0 to 1	Allows adjustment of the acceleration pattern.	NO
Ad 2	Deceleration pattern	0	0 to 1	Allows adjustment of the deceleration pattern.	NO
Ad 3	S-curve start point gradient	40\%	1 to 100\%	Defines the slope level of the S-curve as a percentage, up to half of the total acceleration and deceleration values. It can set parameter Ad 3 to a higher value to increase the slope level for smoother acceleration and deceleration.	NO
Ad 4	S-curve end point gradient	40\%	1 to 100\%	Defines the slope level of the S-curve as a percentage, up to half of the remaining total acceleration and deceleration values. It can set the parameter Ad 4 to a higher value to increase the slope level to reach constant speed and stop more smoothly.	NO
Ad 8	Stop mode	0	0 to 2	Allows selection of the stop mode.	YES
Ad 9	Forward and reverse run prevention	0	0 to 2	Configures the direction of rotation of the motors to prevent the motors from running in only one direction.	YES
Ad 10	Start after low voltage	0	0 to 1	It can start an operation on the drive after the power is turned ON. This parameter is not disabled when the [RUN] key on the keypad or RS-485 communication is selected as the command input device. drive is started.	YES
Ad 12	DC braking time at startup	0.0 s	$\begin{aligned} & 0.0 \text { to } \\ & 60.0 \mathrm{~s} \end{aligned}$	Adjusts the running time of the DC brake. The motor accelerates after the DC voltage is supplied for the set time.	NO
Ad 13	DC braking rate at startup	50\%	0 to 200\%	Sets the level of current to be applied to the motor, as a percentage of the rated motor current during DC brake operation. The parameter setting depends on the rated motor current (MrC).	NO
Ad 14	Output blocking time before DC braking	0.00 s	$\begin{aligned} & 0.00 \text { to } \\ & 60.00 \mathrm{~s} \end{aligned}$	Adjusts the blocking time of the drive output before DC braking. This parameter is available when code $\operatorname{Ad} 8$ is set to 1 .	YES

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE	DESCRIPTION			SET ON RUN
Ad 15	DC braking time	1.0 s	$\begin{aligned} & 0.0 \text { to } \\ & 60.0 \mathrm{~s} \end{aligned}$	Adjusts the duration time of the DC power supply to the motor. This parameter is available when code Ad 8 is set to 1 . ! Caution: the motor may overheat or be damaged if an excessive amount of DC braking is applied to the motor, or if the DC braking time is set too high.			YES
Ad 16	DC braking rate	50\%	0 to 200\%	Sets the amount of DC braking to be applied. The parameter setting is based on the rated motor current (MrC). This parameter is available when code Ad 8 is set to 1.\qquad Caution: the motor may overheat or be damaged if an excessive amount of DC braking is applied to the motor, or if the DC braking time is set too high.			YES
Ad 17	DC braking frequency	5.00 Hz	$\begin{gathered} \text { dr } 19 \text { to } \\ 60.00 \mathrm{~Hz} \end{gathered}$	Adjusts the frequency to initiate $D C$ braking. This parameter is available when code Ad 8 is set to 1 .			YES
Ad 20	Frequency	5.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$	During the acceleration process, the drive will stop at this frequency, keeping it constant for the type set in parameter Ad 21. Similarly, during the acceleration process, parameter Ad 21 allows to define how long the drive will run at the constant frequency set in Ad 20. ! Caution: For a lift type load, the motor may be damaged, or its life cycle may be reduced due to motor overload current.			NO
Ad 21	Dwell time	0.0 s	$\begin{aligned} & 0.0 \text { to } \\ & 10.0 \mathrm{~s} \end{aligned}$				NO
Ad 24	Use frequency limits	0	0 to 1	Enables or disables frequency limits.			NO
				OPT.	DESCR.	FUNCTION	
				0	No	Frequency limit off.	
				1	Yes	Frequency limit on.	
Ad 25	Frequency lower limit	0.50 Hz	$\begin{gathered} 0.00 \mathrm{~Hz} \text { to } \\ \text { Ad } 26 \end{gathered}$	Adjusts the lower frequency limit if parameter Ad 24 is set to 1.			YES
Ad 26	Frequency higher limit	60.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$	Adjusts the upper frequency limit when parameter Ad 24 is set to 1 .			NO
Ad 27	Frequency jump	0	0 to 1	The user can enable or disable a jump frequency band to avoid resonant frequencies or other types of reference frequencies that the motor will avoid as references. The unit will pass these frequencies during speed changes (acceleration and/or deceleration) but will not operate within these values.			NO
				OPT.	VALUE	FUNCTION	
				0	No	Frequency jumping deactivated.	
				1	Yes	Frequency jumping activated.	
Ad $28{ }^{1}$	Frequency jump lower limit 1	10.00 Hz	$0.00 \text { to }$ $\text { Ad } 29$	Sets the	wer freque	ncy jump limit 1.	YES
Ad 291	Frequency jump upper limit 1	15.00 Hz	$\begin{aligned} & \text { Ad } 28 \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$	Sets the	pper freque	ncy jump limit 1.	YES
Ad $30{ }^{1}$	Frequency jump lower limit 2	20.00 Hz	$\begin{gathered} 0.00 \mathrm{~Hz} \text { to } \\ \text { Ad } 31 \end{gathered}$	Sets the	wer freque	ncy jump limit 2.	YES
Ad $31{ }^{1}$	Frequency jump upper limit 2	25.00 Hz	$\begin{aligned} & \mathrm{Ad} 30 \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$	Sets the	pper freque	ncy jump limit 2.	YES
Ad $32{ }^{1}$	Frequency jump lower limit 3	30.00 Hz	$\begin{gathered} 0.00 \mathrm{~Hz} \text { to } \\ \text { Ad } 33 \end{gathered}$	Sets the	wer freque	ncy jump limit 3.	YES

[^5]| SCREEN | DESCRIPTION | DEFAULT
 VALUE | RANGE | | DESCRIPTION | SET ON
 RUN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ad 331 | Frequency jump upper limit 3 | 25.00 Hz | $\begin{aligned} & \text { Ad } 32 \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$ | Sets the upper frequency jump limit 3. | | YES |
| Ad $41{ }^{1}$ | Brake open current | 50.0\% | $\begin{gathered} 0.0 \text { to } \\ 180.0 \% \end{gathered}$ | Sets the brake opening current. | | NO |
| Ad 42 ${ }^{1}$ | Brake open delay time | 1.00 s | $\begin{aligned} & 0.00 \text { to } \\ & 10.00 \mathrm{~s} \end{aligned}$ | Once the motor current is higher than the current set in Ad 41 and the frequency reached in the motor is the same as the frequency set in Ad 44, the drive will open the output relay or the multifunction output terminal and maintain this speed for the time set in this parameter. | | NO |
| Ad 44^{1} | Brake open forward frequency | 1.00 Hz | $\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$ | Adjusts the brake opening frequency of the configured relay while the motor is accelerating in positive direction. | | NO |
| Ad $45{ }^{1}$ | Brake open reverse frequency | 1.00 Hz | $\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$ | Adjusts the brake opening frequency of the configured relay while the motor is accelerating in the negative direction. | | NO |
| Ad 46 ${ }^{1}$ | Brake close delay time | 1.00 s | $\begin{aligned} & 0.00 \text { to } \\ & 10.00 \mathrm{~s} \end{aligned}$ | Once the motor has reached the frequency set in Ad 47, the drive shall close the braking relay and maintain this speed for the time set in this parameter. | | NO |
| Ad $47{ }^{1}$ | Brake close frequency | 2.00 Hz | $\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$ | Sets the frequency value at which the brake relay shall stop operating, allowing the brake closed function. | | NO |
| Ad 51 | Energy saving operation | 0\% | 0 to 30\% | Sets the amount of reduction of the output voltage of Ad 51 as a function of the maximum output voltage IOv . This operation is used to save energy by reducing the voltage supplied to motors under low load and no-load conditions when a fan or pump is running. | | YES |
| Ad 63 | Motor RPM display gain | 100\% | $\begin{gathered} 1 \text { to } \\ 1000 \% \end{gathered}$ | Introduces the motorRPM display gain with the gearing rate involved when monitoring motor system RPM instead of motor shaft RPM. | | NO |
| Ad $64{ }^{1}$ | Up-down operation frequency save | 0.00 Hz | $\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$ | If parameter Ad 65 is set to 1 , the Up-Down save function allows the drive to save the frequency in parameter Ad 64 before stopping or accelerating. | | YES |
| Ad 65 | Up-down operation frequency save selection | $\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$ | Indicates Up-Down frequency save selection. | | YES |
| | | | | OPT. | FUNCTION | |
| | | | | No | Save the frequency. | |
| | | | | Yes | Configures frequency saving. | |
| Ad 66 | Up-down operation mode selection | 0 | 0 to 2 | When parameter Ad 66 is set to 1 , the motor accelerates at the step frequency set by parameter Ad 67 that has been set as the Up signal. The motor decelerates by the step frequency set by parameter Ad 67 that has been set as the Down signal. | | YES |
| | | | | OPT. | FUNCTION | |
| | | | | 0 | Maximum/minimum frequency reference. | |
| | | | | 1 | Increase or decrease based on the step frequency (Ad67) | |
| | | | | 2 | Mixed DESCRIPTION of 0 and 1. | |
| Ad 67 | Up-down operation step frequency | 0.00 Hz | $\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$ | Indicates the assigned jump frequency. | | NO |
| Ad 79 | DB operation voltage (Dynamic Braking) | 390 V | $\begin{array}{r} 300 \\ \text { to } 400 \mathrm{~V} \\ \hline \end{array}$ | Indicates the operating voltage of the dynamic brake. | | NO |

Group 4: Control Functions $\rightarrow \mathbf{C n}$

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE	FUNCTION	SET ON RUN	
Cn 0	Jump Code	4	0 to 79	Allows to navigate between the different parameters.	YES	
Cn 4	Modulation frequency	3.0 Hz	1.0 to 15.0 Hz	Varies the switching frequency at the output stage of the motor to adjust the noise inside the motor. If the frequency is high, it reduces the operational noise of the motor. If it is low, the operational noise inside the motor increases.	NO	
Cn 71	Speed search selection	0000	0000 to 1111	Sets the speed search mode by setting each bit according to the following table: OPT. FUNCTION	NO	
				0001Speed search on general acceleration.		
				0010 l\|l	Speed search on operation after fault trip.	
				0100 l\|l	Speed search on restart after instantaneous power interruption.	
				1000 Speed search when power is on(Ad10).		
Cn 72	Speed search current level	100\%	80 to 200\%	Controls the amount of current flow during speed search operation as a function of the rated motor current (MrC).	YES	
Cn 73	Speed search P gain	500	0 to 9999	Sets the proportional gain for speed search. The gain is adjusted according to the characteristics of the load.	YES	
Cn 74	Speed search I gain	1000	0 to 9999	Sets the integral gain for speed search. The gain is adjusted according to the characteristics of the load.	YES	

Group 5: Inputs \rightarrow In

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE	FUNCTION	SET ON RUN
$\ln 0$	Jump Code	65	0 to 90	Allows to navigate between the different parameters.	YES
$\ln 7$	Time constant of V1 input filter	10	0 to 9999	Indicates the time constant of the V1 terminal filter.	NO
$\ln 81$	V1 Minimum input voltage	0.00 V	$\begin{aligned} & 0.00 \text { to } \\ & 10.00 \mathrm{~V} \end{aligned}$	Sets the minimum terminal voltage V1.	YES
$\ln 9$	Frequency corresponding to V1 minimum input voltage	0.00 Hz	$\begin{gathered} 0.0 \mathrm{~Hz} \text { to } \\ 400.00 \mathrm{~Hz} \end{gathered}$	Sets the frequency corresponding to the minimum input voltage of terminal V1.	YES
In $10{ }^{1}$	V1 Maximum input voltage	10.00 V	$\begin{aligned} & 0.00 \text { to } \\ & 10.00 \mathrm{~V} \end{aligned}$	Sets the maximum terminal voltage V 1 .	YES
In 11	Frequency corresponding to V1 maximum input voltage	60.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$	Sets the frequency corresponding to the maximum input voltage of the V1 terminal.	YES
In 37	Time constant of V0 input filter	10	$\begin{gathered} 0 \text { to } \\ 9999 \mathrm{~s} \end{gathered}$	Indicates the time constant of the V 0 potentiometer filter.	NO
In 38	V0 Minimum input voltage	0.00 V	$\begin{aligned} & 0.00 \text { to } \\ & 5.00 \mathrm{~V} \end{aligned}$	Sets the minimum input voltage of the potentiometer V0.	YES
In 39	Frequency corresponding to V0 minimum input voltage	0.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$	Sets the frequency corresponding to the minimum input voltage of the potentiometer V0.	YES
In 40	V0 Maximum input voltage	5.00 V	$\begin{aligned} & 0.00 \text { to } \\ & 5.00 \mathrm{~V} \end{aligned}$	Sets the maximum input voltage of potentiometer V0.	YES
In 41	Frequency corresponding to V0 maximum input voltage	60.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$	Sets the frequency corresponding to the maximum input voltage of the potentiometer V0.	YES
In 52	I2 input filter time constant	10	$\begin{gathered} 0 \text { to } \\ 9999 \text { s } \end{gathered}$	Indicates the time constant of the I 2 terminal filter.	NO
In 532	12 minimum current	4.00 mA	$\begin{gathered} 4.00 \text { to } \\ 20.00 \mathrm{~mA} \end{gathered}$	Sets the minimum current of terminal 12.	YES
In 54	12 minimum frequency reference	0.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$	Sets the frequency corresponding to the minimum current of terminal 12 .	YES
In 55 ${ }^{2}$	12 maximum current	20.00 mA	$\begin{gathered} 4.00 \mathrm{to} \\ 20.00 \mathrm{~mA} \end{gathered}$	Sets the maximum current of terminal 12 .	YES
In 56	I2 maximum frequency reference	60.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$	Sets the frequency corresponding to the maximum current of the I2 terminal.	YES
In 57	V input filter time constant	10	$\begin{gathered} 0 \text { to } \\ 9999 \text { s } \end{gathered}$	Indicates the time constant of the input filter of terminal V1.	NO
In 58 ${ }^{3}$	V mínimum input voltage	0.00 V	$\begin{aligned} & 0.00 \text { to } \\ & 10.00 \mathrm{~V} \end{aligned}$	Sets the minimum input voltage of the V terminal.	YES
In 59	Frequency corresponding to V minimum input voltage	0.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$	Sets the frequency corresponding to the minimum input voltage of the V terminal.	YES
In 603	V maximum input voltage	10.00 V	$\begin{gathered} 0.00 \\ \text { to } 10.00 \mathrm{~V} \end{gathered}$	Sets the maximum input voltage of the V terminal.	YES
In 61	Frequency corresponding to V maximum input voltage	60.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$	Sets the frequency corresponding to the maximum input voltage of the terminal V .	YES

[^6]

Group 6: Outputs \rightarrow OU

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE	FUNCTION			SET ON RUN
OU 0	Jump Code	30	0 to 58	Allows to navigate between the different parameters.			YES
OU 1	Multifunction input terminal P1 function setting	0	0 to 3	The analogue outputs are programmable according to the following table:			YES
				OPT.	FUNCTION	DESCRIPTION	
				0	Output frequency	Maximum frequency (FrM).	
				1	Current	150% or inverter's rated current.	
				2	Output Voltage	AC 282V	
				3	DC voltage	DC 410V	
OU 2	Analog output level adjustment	100\%	$\begin{aligned} & 10 \text { to } \\ & 200 \% \end{aligned}$	Adjusts the value of the analogue output according to various counters when an analogue output is used as input to the counter.			NO
OU 30	Fault output setting	010	000 to 111	Configures the relay output in the event of a fault. The multifunction output terminal and the relay with configuration OU 30 operate when code OU 31 or OU 32 is set to 17 .			YES
				OPT.	FUNCTION		
				001	Operation when low voltage trip occurs.		
				010	Operation when fault trip other than low voltage trip occurs.		
				100	Operation when number of automatic restarts after fault trip ($\operatorname{Pr} 9$) is set.		
OU 31	Multi function relay setting	17	0 to 19	Configure the relay according to the following table:			YES
				OPT.	DESCR. FU	NCTION	
				0	FDT-1 De fre re se a ab fre frequ or fre	ects the output quency of the drive ching the frequency by the user. Outputs signal when the solute value (set quency - output quency) is less than equal to the detected quency width/2.	
				1	FDT-2	its a signal when the quency set by the and the detected quency (OU 57) are ual and meets the T-1 condition at the ne time.	
				2	FDT-3	its a signal when the solute value (output quency-operating quency) is less than equal to the width of detected quency/2.	
				3	FDT-4 En foll $-\ln$ O Del $-\ln$ O (D De wi fre 	its a signal under the owing conditions: acceleration: erating frequency \geqq ected frequency. deceleration: erating frequency> tected frequencyected frequency th-detected quency/2).	

Group 7: Communication Bus \rightarrow CM

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE	FUNCTION			SET ON RUN
CM 0	Jump Code	31	0 to 58	Allows to navigate between the different parameters.			YES
CM 1	Inverter station ID	1	1 to 250	Unit identifier for communicating within the network.			YES
CM 2	Communication protocol setting	0	0 to 1	Allows selection of the protocol used in communications.			YES
				0	Modbus RTU	Modbus-RTU compatible protocol.	
				1	PE BUS	Communication protocol used to communicate drives.	
CM 3	Communication speed	3	0 to 5	Sets the data transfer rate in Modbus communication.			YES
				OPT.	DESCRIPTION		
				0	1,200 bps		
				1	2,400 bps		
				2	4,800 bps		
				3	9,600 bps		
				4	19,200 bps		
				5	38,400 bps		
CM 4	Parity/stop bit setting	0	0 to 3	Sets a communication configuration, the data length, the parity confirmation method and the number of stop bits.			YES
				OPT.	DESCR.	UNCTION	
				0	D8/PN/S1	bit data/no parity/1 stop	
				1	D8/PN/S2	bit data/no parity/2 stop	
				2	D8/PE/S1	data/even parity/1 p bit	
				3	D8/PO/S1	bit data/odd parity/1 op bit	
CM 5	Communication time setting	5 ms	$\begin{gathered} 2 \text { to } \\ 100 \mathrm{~ms} \end{gathered}$	Sets the Modbus communications transfer rate, which must match with the bus communication master within the drive.			YES
CM31	Read address registration 1	000A	0000 to AA4FF	Defines the output parameter group for data transmission, so that addresses configured in CM 3138 ca be used to send several parameters at once in the same communications frame.			YES
CM32	Read address registration 2	000E					YES
CM33	Read address registration 3	000F					YES
CM34	Read address registration 4	000A					YES
CM35	Read address registration 5	0000					YES
CM36	Read address registration 6	0000					YES
CM37	Read address registration 7	0000					YES
CM38	Read address registration 8	0000					YES
CM51	Write address registration 1	0000	0000 to AA4FF	Defines the input parameter group for data transmission, so that addresses configured in CM 5158 ca be used to send several parameters at once in the same communications frame.			YES
CM52	Write address registration 2	0000					YES
CM53	Write address registration 3	0000					YES
CM54	Write address registration 4	0000					YES
CM55	Write address registration 5	0000					YES
CM56	Write address registration 6	0000					YES
CM57	Write address registration 7	0000					YES
CM58	Write address registration 8	0000					YES

Group 8: PID \rightarrow AP

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE		FUNCTION	SET ON RUN
AP 0	Jump Code	20	0 to 71	Allows to navigate between the different parameters.		YES
AP 1	PID control setting	0	0 to 1	Allows you to section the PID control settings according to the following table:		YES
				OPT.	STATUS	
				0	No	
				1	Yes	
AP 2^{1}	PID units selection	0	0 to 1	Allows selection of the PID scale according to the following table:		YES
				OPT.	DESCRIPTION	
				0	Frequency (Hz)	
				1	Percentage (\%)	
AP $18{ }^{1}$	Amount of PID feedback	$\begin{gathered} 0.00 \mathrm{~Hz} \text { / } \\ 0.0 \% \end{gathered}$	$\begin{gathered} 0.00 \text { to } \\ 400.00 \mathrm{~Hz} \\ 10.0 \text { to } \\ 100.0 \% \end{gathered}$	Corresponds to the feedback input value to the PID controller.		YES
				OPT.	DESCRIPTION	
				0	When AP 2 is 0 : frequency display range $0.00-400.00 \mathrm{~Hz}$	
				1	When AP 2 is 1 : frequency display range $0.00-100.00 \%$	
AP 191	PID reference	$\begin{gathered} 0.00 \mathrm{~Hz} \text { / } \\ 0.0 \% \end{gathered}$	$\begin{gathered} 0.00 \text { to } \\ 400.00 \mathrm{~Hz} \\ 10.0 \mathrm{to} \\ 100.0 \% \end{gathered}$	Corresponds to the PID controller reference value.		YES
				OPT.	DESCRIPTION	
				0	When AP 2 is $0: 0.00-400.00 \mathrm{~Hz}$	
				1	When AP 2 is 1: $0.00-100.0 \%$	
AP $20{ }^{1}$	PID reference setting	0	0 to 5	Select the PID controller ordering number according to the following table:		NO
				OPT.	DESCRIPTION	
				0	Keypad 1	
				1	Keypad 2	
				2	V1: $0-10 \mathrm{~V}$	
				3	I2(I): $0-20 \mathrm{~mA}$	
				4	I2(I): $0-10 \mathrm{~mA}$	
				5	RS - 485 communication	
AP 211	PID feedback setting	2	0 to 3	Selects the reference through which the feedback signal will be introduced to close the control loop.		NO
				OPT.	FUNCTION	
				0	I2(1): $0-20 \mathrm{~mA}$	
				1	I2(I): $0-10 \mathrm{~mA}$	
				2	V1: $0-10 \mathrm{~V}$	
				3	RS - 485 communication	
AP $22{ }^{1}$	PID controller P gain	300.0\%	$\begin{gathered} 0.0 \text { to } \\ 999.9 \% \end{gathered}$	Adjusts the value of the gain controller proportional to the PID controller. This value should be increased whenever a higher control response is required.		YES
AP $23{ }^{1}$	PID controller integral time (I gain)	1.00 s	$\begin{aligned} & 0.10 \text { to } \\ & 32.00 \mathrm{~s} \end{aligned}$	Adjusts the integration time of the controller. If higher precision is required, this value must be increased.		YES
AP 241	PID controller differentiation time (D gain)	0.00 s	$\begin{aligned} & 0.00 \text { to } \\ & 30.00 \mathrm{~s} \end{aligned}$	Adjust the differential time of the controller. Whenever a higher response is required, this value can be increased.		YES

[^7]| SCREEN | DESCRIPTION | DEFAULT
 VALUE | RANGE | | FUNCTION | SET ON RUN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AP $28{ }^{1}$ | PID mode | 0 | 0 to 1 | Sets the control mode of the PID controller according to the following table: | | NO |
| | | | | OPT. | DESCRIPTION | |
| | | | | 0 | Normal PID control | |
| | | | | 1 | Process PID control | |
| AP 291 | PID output upper limit frequency | 60.00 Hz | $\begin{aligned} & \text { AP } 30 \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$ | Adjusts the PID output upper limit. | | YES |
| AP $30{ }^{1}$ | PID output lower limit frequency | 60.00 Hz | $\begin{aligned} & 0.00 \text { to } \\ & \text { AP } 29 \end{aligned}$ | Adjusts the PID output lower limit. | | YES |
| AP $37{ }^{2}$ | Sleep mode activation delay | 60.0s | $\begin{gathered} 0.0 \text { to } \\ 2000.0 \mathrm{~s} \end{gathered}$ | Set the delay time before enabling the sleep mode. If the drive operates at a speed value under the value of AP. 38 , it will stop running and enter in sleep mode. | | YES |
| AP $38{ }^{1}$ | Sleep mode activation speed | 0.00 Hz | $\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$ | Set the speed under which if a time period greater than the one defined in parameter AP 37, the drive will stop operating and enter in sleep mode. | | YES |
| AP 391 | Wake-up level | 35.0\% | $\begin{gathered} 0.0 \text { to } \\ 100.0 \% \end{gathered}$ | Set the resuming PID control level after a suspension period (sleep mode). | | YES |
| AP 70 | Draw operation mode selection | 0 | 0 to 4 | Draw operation is a tension control. This feature allows a constant tension to be applied to the material being pulled by a motorised device by adjusting the motor speed finely using operating frequencies that are proportional to a ratio of the main frequency reference. The ratio applied to the output frequency differs according to the setting of parameter AP 70 (extraction operation). | | NO |
| | | | | OPT. | DESCRIPTION
 Do not use draw operation | |
| | | | | 1 | V1 (0 - 10 V): input draw operation. | |
| | | | | 2 | V0 ($0-5 \mathrm{~V}$): input draw operation. | |
| | | | | 3 | 12 ($0-20 \mathrm{~V}$): input draw operation. | |
| | | | | 4 | I2 (0 - 10 V): input draw operation. | |
| AP $22{ }^{1}$ | Draw percentage | 0.0\% | $\begin{gathered} 0.0 \text { to } \\ 100.0 \% \end{gathered}$ | Indicates the draw percentage. | | NO |

[^8]
Group 9: Protections $\rightarrow \mathrm{Pr}$

When a trip occurs and the run command is entered after the trip, the drive protection function is activated and the drive restarts automatically after the time med in code Pr 10. At each restart, the drive counts the number of retries and subtracts it from the number programmed in code $\operatorname{Pr} 9$ until the retry number cour reach 0 . he to the ig wis

Selects the operation that is executed when a in Pr13.

Adjusts the delay time after which the loss of speed

Adjusts the time for determining the loss of the analogue speed command.

The overload warning is a combination of parameters Pr 18-20. The drive will enable some of the digital outputs configured as 'OverLoad' whenever the current flowing into the motor is greater than the value defined in parameter Pr 18 for the time set in parameter $\operatorname{Pr} 19$.

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE	FUNCTION	SET ON RUN
Pr 20	Overload warning selection	0	0 to 1	The drive takes the following actions in case of an overload failure. ! Caution: Ensure that disabling this protection does not compromise the operation of the installation and/or equipment.	YES
Pr 21	Overload fault level	180\%	$\begin{aligned} & 30 \text { to } \\ & 200 \% \end{aligned}$	The overload fault protection is a combination of parameters $\operatorname{Pr} 20-22$. The drive will perform the action selected in parameter $\operatorname{Pr} 20$ whenever the current flow inside the motor is higher than the value of parameter $\operatorname{Pr} 21$ for the time defined in parameter $\operatorname{Pr} 22$. Displayed only when $\operatorname{Pr} 20$ is set to 1 .	YES
Pr 22	Overload fault time	60.0 s	$\begin{aligned} & 0.0 \text { to } \\ & 60.0 \mathrm{~s} \end{aligned}$		YES
$\operatorname{Pr} 40$	ETH selection	0	0 to 1	Protects the motor from overheating based on inverse time limit thermal characteristics. The drive output is blocked based on the ETH (Electronic Thermal Motor Overheating Prevention) trip time when the current exceeds the value set in code $\operatorname{Pr} 42$.	YES
Pr 411	Motor cooling type	0	0 to 1	Selects the type of motor cooling according to the following table:	YES
Pr42 ${ }^{1}$	Electronic thermal 1 minute level	150\%	$\begin{gathered} \text { Pr } 43 \text { to } \\ 200 \% \end{gathered}$	Introduces the maximum current per minute of the motor based on the rated current of the motor. The value cannot be set lower than the value set in $\operatorname{Pr} 43$.	YES
Pr $43{ }^{1}$	Electronic thermal continuous operation level	100\%	$\begin{aligned} & 50 \% \text { to } \\ & \text { Pr } 42 \end{aligned}$	Introduces the current at which the motor must run continuously. Generally, the value is the rated current specified on the motor nameplate. The value cannot be set to the value set in $\operatorname{Pr} 42,150 \%$, or higher.	YES
Pr 50	Stall prevention selection	000	$\begin{gathered} 000 \text { to } \\ 100 \end{gathered}$	This protection limits the output current to the motor and can be configured for acceleration, deceleration or constant speed motor operation.	NO
Pr 52	Stall prevention level	150\%	$\begin{aligned} & 30 \text { to } \\ & 200 \% \end{aligned}$	Motor accelerates or decelerates when it exceeds the value set in parameter Pr52.	NO
Pr 53	Voltage limit when using stall prevention during deceleration	0	0 to 1	Enables or disables the voltage limit during deceleration. Displayed when Pr50 is set to 2 or 1 .	NO
Pr 65	DB (Dynamic Braking) resistor warning level limit setting	1	0 to 1	Adjusts the warning level limit of dynamic brake resistance.	NO
Pr 66	DB resistor warning level	10\%	0 to 30\%	Defines the rate at which the braking resistor operates for one operating cycle. Displayed when $\operatorname{Pr} 50$ is set to 2 or 1 .	YES

[^9]

Group 10: Second Motor \rightarrow M2

This groups appears if of the multi-function input terminals $\ln 65-69$ has been set to 12 (secondary motor).

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE		FUNCTION M2 0	Jump Code

Group 11: Configuration Mode \rightarrow CF

SCREEN	DESCRIPTION	DEFAULT VALUE	RANGE	FUNCTION	SET ON RUN
CF 0	Jump Code	1	0 to 95	Sets and modifies a frequency reference for an operation	YES
CF 1	Display after power on	0	0 to 17	Items that are displayed after power is on:	NO
				OPT. DESCRIPTION	
				0 Command Frequency	
				1 Acceleration time	
				2 Deceleration time	
				3 Command source	
				$4 \quad$ Frequency setting method	
				5 Motor selection	
				6 Rated motor current	
				7 Base frequency	
				8 Maximum frequency	
				$9 \quad$ Output voltage adjustment	
				10 Forward boost	
				11 Reverse boost	
				12 Output current	
				13 Motor RPM	
				14 Inverter DC voltage	
				15 艮User select signal (code, dr 81 setting)	
				16 Currently out of order	
				17 Open hidden groups	
CF 2	I/O Type	-	0 to 1	Indicates the type of inputs and outputs. In this case is advanced I/O.	NO
CF 79	Software version	-	-	Indicates software versión.	NO
CF93	Parameter initialization	0	0 to 13	Indicates the initialization of the parameters:	YES
				OPT. FUNCTION	
				0 Do not initialize.	
				1 Initialize all.	
				2 Initialize operation group.	
				3 Initialize drive (dr) group.	
				4 Initialize basic function (bA) group.	
				5 llat function (Ad)	
				6 llat function (Cn)	
				7 llal $\begin{aligned} & \text { Initialize input terminal block (In) } \\ & \text { group. }\end{aligned}$	
				8 Initialize output terminal block (OU)	
				9 Initialize communication function (CM) group.	
				10 llation (AP)Initialize application function group.	
				11 Initialize protection function (Pr)	
				12 Initialize second motor function $\begin{aligned} & \text { group (M2). }\end{aligned}$	
				13 Initialize config mode group (CF).	
CF94	Password registration	0000	$0000 \text { to }$ FFFF	Registers a password to prevent unauthorized modification of parameter settings.	YES
CF95	Parameter lock	0	-	Unlocks or locks the parameters according to the password.	YES
				OPC. DESCRIPTION	
				UL (Unlock) Unlock parameter. L (Lock) Lock parameter.	

14. MODBUS COMMUNICATION

Introduction

To control the variable speed drive with a PLC or a computer. the industrial standard communications protocol of Modicon, Modbus, is used. Connect the communication cables and set the communication parameters on the drive according to the guidelines within this section. Various drives, or other slave devices, can be connected in a RS485 network to be controlled by a PLC or computer. This way, parameter setting, and monitoring can be done from a computer, via a user program.

To communicate, any kind of RS485 converter can be used. Specifications depend on the manufacturer.

To communicate, any kind of RS485 converter can be used. Specifications depend on the manufacturer.
The purpose of the Serial Communication Network of the SD150 is to integrate the drive into a network compatible with the Modbus communications protocol. This is possible using the RS485 physical communications port or USB port.

Modbus communication system allows SD150 drives to be controlled and/or monitored as a slave by a Modbus master from a remote location.

RS485 network allows connecting up to 16 equipment in the same network.
SD150 drives operate as a peripheral slave when connected to Modbus system. This means that the drive does not start the communication task, the master does.

Practically all of the operating modes, parameters and drive characteristics are accessible through serial communications. For example, master can give start and stop order to the drive, control SD150 status, read the current used by the motor etc., in short, the master can access all of the features of the drive.

Communication standards

The RS-485 communication standards support the Multi-drop Link System and offer an interface that is strongly resistant to noise. The following table details the communication standards.

ITEM	STANDARD
Communication method/ Transmission type	RS-485/Bus type, Multi-drop Link System
Drive type name	SD150
Number of connected inverters/ Transmission distance	Maximum of 16 inverters / Maximum $1,200 \mathrm{~m}$ (recommended distance: within Recommended cable size 700 m)
Installation type	Two Pair Shielded Twisted Pair Cable (keep it a safe distance from the power cable.)
Power supply	RJ45 connector (pin 1: S+, pin 8: S-, pin 7: SG) on the I/O board
Communication speed	Supplied by the inverter- an insulated power source from the driver's power circuit
Control procedure	$1,200 / 2,400 / 4,800 / 9,600 / 19,200 / 38,400$ bps
Communication system	Asynchronous communications system
Character system	Half duplex system
Stop bit length	Modbus-RTU: Binary / LS INV 485: ASCII
Frame error check	$1-$ bit/2-bit
Parity check	2 bytes
Output signal level	None/Even/Odd
Input signal level	'1' logical $=+5 \mathrm{~V}$ differential
'0' logical $=-5 \mathrm{~V}$ differential	

RS485 Connections

The following diagram shows a common wiring for a RS485 connection:

Supported Modbus function codes

Serial communications protocol provided by SD150 drive adheres to Modbus. The drive uses four reading and writing functions from all of the functions that exist in Modbus protocol. These are:

FUNCTION	DESCRIPTION
3	Registers Reading
4	Read Input Register
6	Write Single Register
16	Registers Writing

The implementation of these function codes allows reading up to 120 registers from a Parameter Group using a single frame. If you want to access to a consecutive memory register, but belonging to different groups, you should access in as many frames as groups are involved.

Modbus function code № 3: Registers Reading

This function code allows the Modbus controller (master) to read the content of the data registers indicated in the drive (slave). This function code only admits unicast addressing. Broadcast or groupcast addressing are not possible with this function code. The implementation of this function code in the drive allows reading up to 120 registers with consecutive addresses of the drive in a single frame.

Next, a frame is shown where the master tries to read the content of 3 registers of a drive where the current used by each phase is. The information that should be attached in the ask frame is the following:

- Data address of the drive.
- Modbus function code (3 Registers reading).
- Starting Data address.
- Registers number for reading.
- CRC-16 code ${ }^{1}$.

The answer of the drive (slave) should contain the following fields:

- Data address of the slave.
- Modbus function code (3 Registers reading).
- Bytes number for reading.
- Bytes number / 2 registers.
- CRC-16 code ${ }^{1}$.

Each register consists of 2 bytes (2×8 bits=16 bits). This is the default length of all registers in the SD150.

Example:

Suppose that we want to read the motor current (nameplate data) via communications. This data corresponds to the parameter G2.13 'MTR CUR=0.0A'. The frame that should be transmitted is:

MODBUS	MODBUS	STARTING DATA ADDRESS		
(44622)	REGISTERS NUMBER	CRC-161		
$0 \times 0 \mathrm{~A}$	FUNCTION CODE	0×03	$0 \times 0120 \mathrm{D}$	0×0001

Suppose that instantaneous current of the equipment is 8.2 A. (Modbus value 82 decimals $=0 \times 52$ Hexadecimal). The answer of the slave will be:

MODBUS ADDRESS	MODBUS FUNCTION CODE	BYTES NUMBER	DATA (ADDRESS 20) $(=110)$	CRC-161
$0 \times 0 \mathrm{~A}$	0×03	0×02	0×0052	$0 \times 9 \mathrm{C} 78$

[^10]
Modbus function code № 16: Registers writing

This function code allows the Modbus controller (master) to write the content of the data registers indicated in the drive (slave). whenever those registers are not of Read only. Registers writing by the master does not impede the later modification of those registers by the slave.

The implementation of this function code in the drive allows writing up to 5 registers of the drive in a single frame.

Next is shown a frame where the master tries to write the content of 1 register that stores the acceleration time. The information that should be sent in the request frame is the following:

- Data address of the slave.
- Modbus function code (16 Registers writing).
- Starting Data Address.
- Registers number for writing.
- Bytes number for writing.
- Content of registers for writing.
- CRC-16 code ${ }^{1}$.

The answer of the slaves includes:

- Data address of the slave.
- Modbus function code (16 Registers writing).
- Starting Data Address.
- Written registers number.
- CRC-16 code ${ }^{1}$.

Addressing modes

Broadcast addressing mode

Broadcast addressing mode allows the master to access at the same time to all of the slaves connected to the Modbus network. The Modbus function code that admits this global addressing mode is:

FUNCTION	DESCRIPTION
16	Registers Writing

In order to access to all of the equipment connected in a Modbus network. you must use the address 0.

When this address is used. all of the slaves in the Modbus network make the required task but they do not prepare any answer.

[^11]
Summary of Modbus addresses

Common area parameter

ADDRESS	PARAMETER	SCALE	UNIT	RW	VALUES
0x0000	Inverter model	-	-	R	E: SD150
0x0001	Inverter capacity	-	-	R	0002: $0.4 \mathrm{~kW}-1$ 000B: $2.2 \mathrm{~kW}-2$ 0003: $0.8 \mathrm{~kW}-1$ 000F: $0.4 \mathrm{~kW}-4$ 0004: $1.5 \mathrm{~kW}-1$ $0010: 0.8 \mathrm{~kW}-4$ 0005: $2.2 \mathrm{~kW}-1$ $0011: 1.5 \mathrm{~kW}-4$ 000A: $1.5 \mathrm{~kW}-2$ $0012: 2.2 \mathrm{~kW}-4$
0x0002	Inverter input voltage	-	-	R	$0: 230 \mathrm{~V}$ - single phase
0x0003	Version	-	-	R	Example 0x0010: Version 1.01
0x0004	Parameter setting	-	-	RW	0 : Forbid communication settings 1 :Allow communication settings
0x0005	Command Frequency	0.01	Hz	RW	Start frequency - Maximum frequency
					B15, B14, B13: Reserved
0x0006	Operation command	-	-	R	$B 12, B 11, B 10, B 9, B 8:$ Frequency command information 0 : Keypad-1, Keypad-2 1: Reserved 2: Multi-step speed 1 3: Multi-step speed 2 4: Multi-step speed 3 5: Multi-step speed 4 6: Multi-step speed 5 7: Multi-step speed 6 8: Multi-step speed 7 9: Up 10: Down 11: Up/down zero 12: V0 13: V1 14: I2(I) 15: 12(V) 16: $\mathrm{V} 0+12(1)$ 17: V0+12(V) 18: V0+12(M) 19: Communication operation
					B7, B6: Operation command information.
					0 : Terminal block 1: Keypad 3: Communication
				RW	B3: Fault reset B2: Reverse operation B1: Forward operation BO: Stop
0x0007	Acceleration time	0.1	s	RW	Refer to the table of functions.
0x0008	Deceleration time	0.1	s	RW	Refer to the table of functions.
0x0009	Current	0.1	A	R	Refer to the table of functions.

ADDRESS	PARAMETER	SCALE	UNIT	RW	VALUES
0x000A	Output frequency	0.01	Hz	R	Refer to the table of functions.
0x000B	Output voltage	1	V	R	Refer to the table of functions.
0x000C	DC Link voltage	1	V	R	Refer to the table of functions.
0x000D	Output power	0.1	kW	R	Refer to the table of functions.
0x000E	Operation status	-	-	R	B15: Reserved B14: Reserved B13: Reserved B12: Reverse command B11: Forward command B10: Brake release signal B9: Reserved B8: Drive stopped B7: DC Braking B6: Speed reached B5: Decelerating B4: Accelerating B2: Operating in reverse direction B1: Operating in forward direction BO: Stopped
0x000F	Fault trip information-A	-	-	R	B15: LVT B14: IOLT B13: POT B12: FAN B11: EEP B10: EXT-B B9: Reserved B8: OLT B7:ETH B6: OHT B5: GFT B4: COL B3: $\operatorname{ETX}(B X)$ B2: EXT-A B1: OVT BO: Reserved
0x0010	Input terminal information	-	-	R	B15-B5: Reserved B4: P5 B3: P4 B2: P3 B1:P2 BO: P1
0x0011	Output terminal information	-	-	R	B4: Others 3ABC: Reserved
0×0012	V1	-	-	R	The value corresponds to the $0-10 \mathrm{~V}$ input ($0 \times 0000-0 \times 03 F F$).
0×0013	Vo	-	-	R	0-5V KPD Volume (0x0000-0x03FF)
0x0014	1	-	-	R	The value corresponds to the 0-20 mA input (0x0000-0x03FF)
0x0015	RPM	-	-	R	Refer to the table of functions.
0x001A	Unit display	-	-	R	Not used.
0x001B	Number of poles	-	-	R	Notused.

ADDRESS	PARAMETER	SCALE	UNIT	RW	VALUES
0x001C	Custom Version	-	-	R	Not used.
0x001D	Fault trip information B	-	-	R	B9: ROT B7: Reserved B6: Reserved B5: NBR B4: OCT B3: REEP B2: NTC B1: Reserved BO: COM
0x001E	PID Feedback	-	-	R	When feedback is set to communication in PID operation, the amount of feedback is written and read in $0,1 \%$ increments.
$\begin{aligned} & \text { 0x0100- } \\ & \text { 0x0107 } \end{aligned}$	Read address registration	-	-	R	Oh0100: CM-31 Oh0101: CM-32 Oh0102: CM-33 Oh0103: CM-34 Oh0104: CM-35 Oh0105: CM-36 Oh0106: CM-37 Oh0107: CM-38
0x0108$0 \times 010 \mathrm{~F}$:	Write address registration	-	-	R	Oh0108: CM-51 Oh0109: CM-52 Oh010A: CM-53 Oh010B: CM-54 Oh010C: CM-55 Oh010D: CM-56 Oh010E: CM-57 Oh010F: CM-58

Programming parameters

SCREEN	DESCRIPTION	MODBUS DECIMAL	ADDRESS HEXADECIMAL	RANGE	MODBUS
R.00	Command frequency	47936	Oh1F00	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
ACC	Acceleration time	47937	Oh1F01	0.0 to 6000 s	$0.0-6000 \mathrm{~s}$
dEC	Deceleration time	47938	Oh1F02		Keypad
				Fx/Rx-1	Fx/Rx-1

SCREEN	DESCRIPTION	MODBUS DECIMAL	ADDRESS HEXADECIMAL	RANGE	MODBUS RANGE
dr 28	Automatic torque boost regeneration gain	44380	Oh111C	0.0 to 300.0\%	0.0 to 300.0\%
dr 81	Select Monitor code	44433	Oh1151	Output voltage vOL [V] Output power (POr) [kW] Torque (tOr) [kgf*m] Analog V1 terminal input [v1M] Analog 12 terminal input (I2M) [mA/V].	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$
dr 85	Read Parameters	-	-	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
dr 86	Write Parameters	-	-	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
dr 91	Smart Copier	-	-	None Reserved Reserved SmartUpLoad	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$
bA 4	Command source 2	44612	Oh1204	Keypad Fx/Rx-1 Fx/Rx-2 RS-485 communication	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$
bA 5	Frequency source 2	44613	Oh1205	Keypad 1 Keypad 2 V0: 0-5 V V1: 0-10 V I2 (I): $0-20 \mathrm{~mA}$ I2(V): 0-10V Volume +12 (I) Volume +12 (V) Volume + V1 RS-485 communication Up-down operation	$\begin{gathered} 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$
bA 7	V/F pattern	44615	Oh1207	Linear Square reduction User defined V/F pattern	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
bA 8	Unit of acc/dec time setting	44616	Oh1208	$\begin{gathered} 0.01 \text { to } 20.0 \mathrm{~s} \\ 0.1 \text { to } 6000.0 \mathrm{~s} \\ 1 \text { to } 60000 \mathrm{~s} \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
bA 9	Acc/dec frequency reference	44617	Oh1209	Maximum frequency (400.00 Hz) Delta frequency	0 1
bA 11	Number of motor poles	44619	Oh120B	2 to 12	2 to 12
bA 12	Motor no load current	44620	Oh120C	0.00 to 10.00 Hz	0.00 to 10.00 Hz
bA 14	Motor efficiency	44622	Oh120E	0.1 to 100.0A	0.1 to 100.0A
bA 15	Motor efficiency	44623	Oh120F	50 to 100\%	50 to 100\%
bA 16	Load inertia rate	44624	Oh1210	Less than ten times Ten times More than ten times	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
bA 19	Input voltage adjustment	44627	Oh1213	170 to 240V	170 to 240V
bA 25	Slip gain	44633	Oh1219	0.0 to 150.0\%	0.0 to 150.0\%
bA 41	User V/F frequency 1	44649	Oh1229	$\begin{gathered} 0.00 \mathrm{~Hz} \\ \text { to } 400.00 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 400.00 \mathrm{~Hz} \end{aligned}$
bA 42	User V/F voltage 1	44650	Oh122A	0 to100\%	0 to100\%
bA 43	User V/F frequency 2	44651	Oh122B	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
bA 44	User V/F voltage 2	44652	Oh122C	0 to100\%	0 to100\%

SCREEN	DESCRIPTION	MODBUS DECIMAL	ADDRESS HEXADECIMAL	RANGE	MODBUS RANGE
bA 45	User V/F frequency 3	44653	Oh122D	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
bA 46	User V/F voltage 3	44654	Oh122E	0 to100\%	0 to100\%
bA 47	User V/F frequency 4	44655	Oh122F	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
bA 48	User V/F voltage 4	44656	Oh1230	0 to100\%	0 to100\%
bA 50	Multi-step frequency 1	44658	Oh1232	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
bA 51	Multi-step frequency 2	44659	Oh1233	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
bA 52	Multi-step frequency 3	44660	Oh1234		
bA 53	Multi-step frequency 4	44661	Oh1235		
bA 54	Multi-step frequency 5	44662	Oh1236		
bA 55	Multi-step frequency 6	44663	Oh1237		
bA 56	Multi-step frequency 7	44664	Oh1238		
bA 70	Multi-step acceleration time 1	44678	Oh1246	0.00 to 6000.0s	0.00 to 6000.0s
bA 71	Multi-step deceleration time 1	44679	Oh1247		
bA 72	Multi-step acceleration time 2	44680	Oh1248		
bA 73	Multi-step deceleration time 2	44681	Oh1249		
bA 74	Multi-step acceleration time 3	44682	Oh124A		
bA 75	Multi-step deceleration time 3	44683	Oh124B		
bA 76	Multi-step acceleration time 4	44684	Oh124C		
bA 77	Multi-step deceleration time 4	44685	Oh124D		
bA 78	Multi-step acceleration time 5	44686	Oh124E		
bA 79	Multi-step deceleration time 5	44687	Oh124F		
bA 80	Multi-step acceleration time 6	44688	Oh1250		
bA 81	Multi-step deceleration time 6	44688	Oh1251		
bA 82	Multi-step acceleration time 7	44688	Oh1252		
bA 83	Multi-step deceleration time 7	44688	Oh1253		
Ad 1	Acceleration pattern	44865	Oh1301	Linear pattern S pattern	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Ad 2	Deceleration pattern	44866	Oh1302	Linear S-curve	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$
Ad 3	S-curve start point gradient	44867	Oh1303	1 to 100\%	1 to 100\%
Ad 4	S-curve end point gradient	44868	Oh1304	1 to 100\%	1 to 100\%

SCREEN	DESCRIPTION	MODBUS DECIMAL	ADDRESS HEXADECIMAL	RANGE	MODBUS RANGE
Ad 8	Stop mode	44872	Oh1308	Deceleration stops DC braking stops Free run stops	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
Ad 9	Forward and reverse run prevention	44873	Oh1309	Allows forward and reverse run Prevents forward run Prevents reverse run	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
Ad 10	Start after low voltage	44874	Oh130A	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Ad 12	DC braking time at startup	44876	Oh130C	0.0 to 60.0s	0.0 to 60.0s
Ad 13	DC braking rate at startup	44877	Oh130D	0 to 200\%	0 to 200\%
Ad 14	Output blocking time before DC braking	44878	Oh130E	0.00 to 60.00s	0.00 to 60.00s
Ad 15	DC braking time	44879	Oh130F	0.0 to 60.0s	0.0 to 60.0s
Ad 16	DC braking rate	44880	Oh1310	0 to 200\%	0 to 200\%
Ad 17	DC braking frequency	44881	Oh1311	dr19 to 60.00 Hz	dr19 to 60.00 Hz
Ad 20	Frequency	44884	Oh1314	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
Ad 21	Dwell time	44885	Oh1315	0.0 to 10.0s	0.0 to 10.0s
Ad 24	Use frequency limits		Oh1318	Frequency limit off Frequency limit on	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Ad 25	Frequency lower limit	44888	Oh1319	0.00 Hz to Ad26	0.00 Hz to Ad 26
Ad 26	Frequency higher limit	44890	Oh131A	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
Ad 27	Frequency jump	44891	Oh131B	Jump deactivated Jump activated	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Ad 28	Frequency jump lower limit 1	44892	Oh131C	0.00 to Ad29	0.00 to Ad29
Ad 29	Frequency jump upper limit 1	44893	Oh131D	Ad28 to 400.00 Hz	Ad28 to 400.00 Hz
Ad 30	Frequency jump lower limit 2	44894	Oh131E	0.00 Hz to Ad 31	0.00 Hz to Ad 31
Ad 31	Frequency jump upper limit 2	44895	Oh131F	Ad30 to 400.00 Hz	Ad30 to 400.00 Hz
Ad 32	Frequency jump lower limit 3	44896	Oh1320	0.00 Hz to Ad33	0.00 Hz to Ad 33
Ad 33	Frequency jump upper limit 3	44897	Oh1321	Ad32 to 400.00 Hz	Ad32 to 400.00 Hz
Ad 41	Brake open current	44905	Oh1329	0.0 to 180.0\%	0.0 to 180.0\%
Ad 42	Brake open delay time	44906	Oh132A	0.00 to 10.00s	0.00 to 10.00s
Ad 44	Brake open forward frequency	44908	Oh132C	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
Ad 45	Brake open reverse frequency	44909	Oh132D	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
Ad 46	Brake close delay time	44910	Oh132E	0.00 to10.00s	0.00 to10.00s
Ad 47	Brake close frequency	44911	Oh132F	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
Ad 51	Energy saving operation	44915	Oh1333	0 to 30\%	0 to 30\%
Ad 63	Motor RPM display gain	44927	Oh133F	1 to 1000\%	1 to 1000\%
Ad 64	Up-down operation frequency save	44928	Oh1340	0.00Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
Ad 65	Up-down operation frequency save selection	44929	Oh1341	Save the frequency Configures frequency saving	$\begin{aligned} & 0 \\ & 1 \end{aligned}$

SCREEN	DESCRIPTION	MODBUS DECIMAL	ADDRESS HEXADECIMAL	RANGE	MODBUS RANGE
Ad 66	Up-down operation mode selection	44930	Oh1342	Maximum/minimum frequency reference Increase or decrease Mixed function	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
Ad 67	Up-down operation step frequency	44931	Oh1343	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
Ad 79	DB operation voltage (Dynamic Braking)	44943	Oh134F	300 to 400V	300 to 400V
Cn 4	Modulation frequency	45124	Oh1404	1.0 to 15.0 Hz	1.0 to 15.0 Hz
Cn 71	Speed search selection	45191	Oh1447	General acceleration After fault trip Restart Power on	$\begin{aligned} & 0001 \\ & 0010 \\ & 0100 \\ & 1000 \\ & \hline \end{aligned}$
Cn 72	Speed search current level	45192	Oh1448	80 to 200\%	80 to 200\%
Cn 73	Speed search P gain	45193	Oh1449	0 to 9999s	0 to 9999s
Cn 74	Speed search I gain	45194	Oh144A	0 to 9999s	0 to 9999s
ln 7	Time constant of V1 input filter	45383	Oh1507	0 to 9999s	0 to 9999s
$\ln 8$	V1 Minimum input voltage	45384	Oh1508	0.00 to 10.00V	0.00 to 10.00 V
$\ln 9$	Frequency corresponding to V1 minimum input voltage	45385	Oh1509	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
In 10	V1 Maximum input voltage	45386	Oh150A	0.00 to 10.00V	0.00 to 10.00 V
In 11	Frequency corresponding to V1 maximum input voltage	445387	Oh150B	0.00 Hz to 400.00 Hz	0.00Hz to 400.00 Hz
In 37	Time constant of V0 input filter	45413	Oh1525	0 to 9999s	0 to 9999s
In 38	V0 Minimum input voltage	45414	Oh1526	0.00 to 5.00 V	0.00 to 5.00 V
In 39	Frequency corresponding to V0 minimum input voltage	45415	Oh1527	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
In 40	V0 Maximum input voltage	45416	Oh1528	0.00 to 5.00 V	0.00 to 5.00 V
In 41	Frequency corresponding to V0 maximum input voltage	45417	Oh1529	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
In 52	I2 input filter time constant	45428	Oh1534	0 to 9999s	0 to 9999s
In 53	12 minimum current	45429	Oh1535	4.00 to 20.00 mA	4.00 to 20.00 mA
In 54	12 minimum frequency reference	45430	Oh1536	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
In 55	12 maximum current	45431	Oh1537	4.00 to 20.00 mA	4.00 to 20.00 mA
In 56	12 maximum frequency reference	45432	Oh1538	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
In 57	V input filter time constant	45433	Oh1539	0 to 9999s	0 to 9999s
In 58	\checkmark mínimum input voltage	45434	Oh153A	0.00 to10.00V	0.00 to10.00V
In 59	Frequency corresponding to V minimum input voltage	45435	Oh153B	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
In 60	\checkmark maximum input voltaje	45436	Oh153C	0.00 to10.00V	0.00 to10.00V

SCREEN	DESCRIPTION	MODBUS DECIMAL	ADDRESS HEXADECIMAL	RANGE	MODBUS RANGE
In 61	Frequency corresponding to V maximum input voltage	45437	Oh153D	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
In 65	Multifunction input terminal P1 function setting	45441	Oh1541	$\begin{aligned} & \text { FX } \\ & \text { RX } \end{aligned}$ Emergency stop RESET JOG Multi-step speed - low	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$
In 66	Multifunction input terminal P2 function setting	45442	Oh1542	Multi-step speed - middle Multi-step speed - high Multi-step acc/dec - low Multi-step acc/dec middle	$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$
In 67	Multifunction input terminal P3 function setting	45443	Oh1543	Multi-step acc/dec - high DC braking during stop command 2nd motor selection Reserved Reserved	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$
In 68	Multifunction input terminal P4 function setting	45444	Oh1544	Up Down 3-wire operation A terminal (EtA) B terminal (EtB) Reserved	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$
In 69	Multifunction input terminal P5 function setting	45445	Oh1545	Transition from PID to general operation 2nd Source Fix analog command frequency Acceleration/deceleration stop command Initialize saved up-down frequency JOG-FX JOG-RX	21 22 23 24 25 26 27
In 70	PNP/NPN selection switch	45446	Oh1546	PNP NPN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
In 85	Multifunction input terminal filter time constant	45461	Oh1555	1 to 15	1 to 15
In 87	Multifunction input contact selection	45463	Oh1557	A contact (NO) B contact (NC)	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
In 90	Input terminal block status display	45466	Oh155A	$\begin{aligned} & \text { P5 } \\ & \text { P4 } \\ & \text { P3 } \\ & \text { P2 } \\ & \text { P1 } \end{aligned}$	BIT4 BIT3 BIT2 BIT1 BITO
OU 1	Multifunction input terminal P1 function setting	45633	Oh1601	Output frequency Current Output Voltage DC voltage	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$
OU 2	Analog output level adjustment	45634	Oh1602	10 to 200\%	10 to 200\%
OU 30	Fault output setting	45662	Oh161E	Low voltage trip Another fault trip Number of automatic restarts	$\begin{aligned} & 001 \\ & 010 \\ & 100 \end{aligned}$

EN

SCREEN	DESCRIPTION	MODBUS DECIMAL	ADDRESS HEXADECIMAL	RANGE	MODBUS RANGE
OU 31	Multi function relay setting	45663	Oh161F	FDT-1 FDT-2 FDT-3 FDT-4 FDT-5 Overload (OL) Inverter Overload (IOL) Motor stall (STALL) Over voltage (Ovt) Low voltage (Lvt)	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$
OU 32	Multifunction output 2 feature selection	45664	Oh1620	Inverter cooling fan overheat Lost command Run Stop At constant speed Speed search Ready Fault output setting Abnormal cooling fan alarm Brake signal setting	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & \\ & 19 \end{aligned}$
OU 41	Output terminal block status display	45673	Oh1629	Relay1 Relay2 / Open collector output	$\begin{aligned} & 00 \\ & 01 \\ & 11 \\ & \hline \end{aligned}$
OU 52	Multifunction output/relay contact selection	45684	Oh1634	A contact (NO) B Contact (NC)	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
OU 57	Detection frequency	45689	Oh1639	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
OU 58	Detection frequency band	45690	Oh163A	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
CM 1	Inverter station ID		Oh1701	1 to 250	1 to 250
CM 2	Communication protocol setting		Oh1702	Modbus-RTU Communication protoco	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$
CM 3	Communication speed		Oh1703	$\begin{aligned} & 1,200 \mathrm{bps} \\ & 2,400 \mathrm{bps} \\ & 4,800 \mathrm{bps} \\ & 9,600 \mathrm{bps} \\ & 19,200 \mathrm{bps} \\ & 38,400 \mathrm{bps} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$
CM 4	Parity/stop bit setting		Oh1704	$\begin{aligned} & \text { D8/PN/S1 } \\ & \text { D8/PN/S2 } \\ & \text { D8/PE/S1 } \\ & \text { D8/PO/S1 } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$
CM 5	Communication time setting		Oh1705	2 a 100 ms	2 a 100 ms
CM 31	Read address registration 1 to 8	-	Oh171F	0000 to A4FF	0000 to A4FF
CM 32		-	Oh1720		
CM 33		-	Oh1721		
CM 34		-	Oh1722		
CM 35		-	Oh1723		
CM 36		-	Oh1724		
CM 37		-	Oh1725		
CM 38		-	Oh1726		
CM 51	Write address registration 1 to 8	-	Oh1733	0000 to A4FF	0000 to A4FF
CM 52		-	Oh1734		
CM 53		-	Oh1735		
CM 54		-	Oh1736		
CM 55		-	Oh1737		
CM 56		-	Oh1738		
CM 57		-	Oh1739		
CM 58		-	Oh173A		
AP 1	PID control setting	46145	Oh1801	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$

SCREEN	DESCRIPTION	MODBUS DECIMAL	ADDRESS HEXADECIMAL	RANGE	MODBUS RANGE
AP 2	PID units selection	46146	Oh1802	Frequency (Hz) Percentage (\%)	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$
AP 18	Amount of PID feedback	46162	Oh1812	$\begin{gathered} 0.00 \text { to } 400.00 \mathrm{~Hz} \\ 0.0 \text { to } 100.0 \% \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
AP 19	PID reference	46163	Oh1813	$\begin{gathered} 0.00 \mathrm{~Hz} \text { to } 400.00 \mathrm{~Hz} \\ 0.0 \text { to } 100.0 \% \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
AP 20	PID reference setting	46164	Oh1814	Keypad 1 Keypad 2 V1: $0-10 \mathrm{~V}$ I2(I): $0-20 \mathrm{~mA}$ I2(I): $0-10 \mathrm{~mA}$ RS - 485 communication	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$
AP 21	PID feedback setting	46165	Oh1815	$\mathrm{I} 2(\mathrm{I}): 0-20 \mathrm{~mA}$ $\mathrm{I}(\mathrm{I}): 0-10 \mathrm{~mA}$ $\mathrm{~V} 1: 0-10 \mathrm{~V}$ RS - 485 communication	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$
AP 22	PID controller P gain	46166	Oh1816	0.0 to 999.9\%	0.0 to 999.9\%
AP 23	PID controller integral time (I gain)	46167	Oh1817	0.10 to 32.00s	0.10 to 32.00s
AP 24	PID controller differentiation time (D gain)	46168	Oh1818	0.00 to 30.00s	0.00 to 30.00s
AP 28	PID mode	46172	Oh181C	Normal PID control Process PID control	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
AP 29	PID output upper limit frequency	46173	Oh181D	AP30 a 400.00 Hz	AP30 a 400.00 Hz
AP 30	PID output lower limit frequency	46174	Oh181E	0.00 Hz to AP29	0.00 Hz to AP29
AP 37	Sleep mode activation delay	46181	Oh1825	0.0 to 2000.0s	0.0 to 2000.0s
AP 38	Sleep mode activation speed	46182	Oh1826	0.00 Hz to 400.00 Hz	0.00 Hz to 400.00 Hz
AP 39	Wake-up level	46183	Oh1827	0.0 to 100.0\%	0.0 to 100.0\%
AP 70	Draw operation mode selection	46214	Oh1846	$\begin{aligned} & \text { V1 }(0-10 \mathrm{~V}) \\ & \text { V0 }(0-5 \mathrm{~V}) \\ & \mathrm{I} 2(0-20 \mathrm{~V}) \\ & \mathrm{I} 2(0-10 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$
AP 22	Draw percentage	46166	Oh1816	0.0 to100.0\%	0.0 to100.0\%
$\operatorname{Pr} 5$	Output openphase protection setting	46405	Oh1905	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr 8	Operation on reset after fault trip	46408	Oh1908	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$
$\operatorname{Pr} 9$	Number of automatic restarts after fault trip	46409	Oh1909	0 to 10 times	0 to 10 times
Pr 10	Automatic restart delay time after fault trip	46410	Oh190A	0.0 to 60.0s	0.0 to 60.0s
Pr 12	Motion at speed command loss	46412	Oh190C	Continue run Free run stop (output block) Deceleration stop	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
Pr 13	Time to decide speed command loss	46413	Oh190D	0.1 to 120.0s	0.1 to 120.0s
Pr 15	Time to determine analog speed command loss	46415	Oh190F	Not operating Half specified value Below specified value	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$

SCREEN	DESCRIPTION	MODBUS DECIMAL	ADDRESS HEXADECIMAL	RANGE	MODBUS RANGE
Pr 18	Overload alarm level	46418	Oh1912	30 to 150\%	30 to 150\%
Pr 19	Overload warning time	46419	Oh1913	0.0 to 30.0 s	0.0 to 30.0 s
Pr 20	Overload warning selection	46420	Oh1914	Protection is disabled Blocks the output	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr 21	Overload fault level	46421	Oh1915	30 to 200\%	30 to 200\%
Pr 22	Overload fault time	46422	Oh1916	0.0 to 60.0s	0.0 to 60.0s
Pr 40	ETH selection	46440	Oh1928	ETH not active ETH active	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr 41	Motor cooling type	46441	Oh1929	Cooler attached to its axis Motor that supplies separate power to the cooled	0 1
Pr 42	Electronic thermal 1 minute level	46442	Oh192A	Pr43 to 200\%	Pr43 to 200\%
Pr 43	Electronic thermal continuous operation level	46443	Oh192B	50 to Pr42	50 to Pr42
Pr 50	Stall prevention selection	46450	Oh1932	Accelerating At a constant speed Decelerating	$\begin{aligned} & 001 \\ & 010 \\ & 100 \end{aligned}$
Pr 52	Stall prevention level	46452	Oh1934	30 to 200\%	30 to 200\%
Pr 53	Voltage limit when using stall prevention during deceleration	46453	Oh1935	Activated Not activated	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr 65	DB (Dynamic Braking) resistor warning level limit setting	46465	Oh1941	DB without level limit DB during the time set at Pr66	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr 66	DB resistor warning level	46466	Oh1942	0 to 30\%	0 to 30\%
Pr 79	Operation at fan fault	46479	Oh194F	Run continuously Stop operation	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr 80	Initial charging circuit trip protection (ROT)	46480	Oh1950	Activated Not activated	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr 91	Fault history 1	46491	Oh195B	-	-
Pr 92	Fault history 2	46492	Oh195C	-	-
Pr 93	Fault history 3	46493	Oh195D	-	-
Pr 94	Fault history 4	46494	Oh195E	-	-
Pr 95	Fault history 5	46495	Oh195F	-	-
Pr 96	Deletion of fault history	46496	Oh1960	Maintain history Delete history	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$
M2 4	Second motor acceleration time	46660	Oh1A04	0.0 to 6000.0 s	0.0 to 6000.0s
M2 5	Second motor deceleration time	46661	Oh1A05	0.0 to 6000.0s	0.0 to 6000.0s
M2 7	Second motor base frequency	46663	Oh1A07	0.1 Hz to 400.00 Hz	0.1 Hz to 400.00 Hz
M2 12	Second motor rated current	46668	Oh1A0C	0.1 to 100.0A	0.1 to 100.0A
M2 25	2nd motor V/F pattern	46681	Oh1A19	Linear Square reduction User V/F	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
M2 26	Second motor forward torque boost	46682	Oh1A1A	0.0 to 150\%	00 to 150%
M2 27	Second motor reverse torque boost	46683	Oh1A1B	0.0 to 15.0\%	0.0 to 15.0\%

SCREEN	DESCRIPTION	MODBUS DECIMAL	ADDRESS HEXADECIMAL	RANGE	MODBUS RANGE
M2 28	Second motor stall prevention level	46684	Oh1A1C	30 to 150\%	30 to 150\%
M2 29	Second motor electronic thermal 1 minute level	46685	Oh1A1D	100 to 200\%	100 to 200\%
M2 30	Second motor electronic thermal continuous operation level	46686	Oh1A1E	50 to 150\%	50 to 150\%
CF 1	Display after power on	46913	Oh1B01	Command Frequency Acceleration time Deceleration time Command source Frequency setting method Motor selection Rated motor current Base frequency Maximum frequency Output voltage adjustment Forward boost Reverse boost Output current Motor RPM Inverter DC voltage Users select signal Currently out of order Open hidden groups	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \\ & 9 \\ & \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & \\ & 15 \\ & 16 \\ & 17 \end{aligned}$
CF 2	I/O Type	46914	Oh1B02	Standard I/O Advanced I/O	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
CF 79	Software version	46991	Oh1B4F	-	-
CF 93	Parameter initialization	47005	Oh1B5D	Do not initialize Initialize all Initialize operation group Initialize dr group Initialize bA group Initialize Ad group Initialize Cn group Initialize In group Initialize OU group Initialize CM group Initialize AP group Initialize Pr group Initialize M2 group Initialize CF group	$\begin{gathered} 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \end{gathered}$
CF 94	Password registration	47006	Oh1B5E	0000 to FFFF	0000 to FFFF
CF 95	Parameter lock	47007	Oh1B5F	Unlock parameter Lock parameter	$\begin{gathered} \mathrm{UL} \\ \mathrm{~L} \end{gathered}$

15. COMMONLY USED CONFIGURATIONS

Start/Stop command and speed setting from keyboard

Parameter configuration

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
0.00	0.00Hz	Frequency reference	$\mathrm{x} . \mathrm{xxHz}$ (set the frequency reference)
ACC	20.0s	Acceleration time	10.0s
dEC	30.0 s	Deceleration time	10.0s
drv	1	Start/Stop control	0: Start/Stop from keyboard
Frq	0	Frequency setting mode	0 : Reference will be introduced from keyboard
Ad 8	0	Stop mode	0: Stop with deceleration ramp 1: DC brake to stop 2: Free run to stop 4: Regenerative brake to stop
Ad 10	0	Start after low voltage	0 : NO (Drive does not start after power loss) 1: YES (Drive starts after power loss)
Ad 24	0	Use frequency limits	0 : NO (Limits are set by maximum frequency and start frequency) 1: YES (Limits are set by the higher and lower frequency limits)
Ad 25	0.50 Hz	Frequency lower limit	0.00 Hz
Ad 26	50.00 Hz	Frequency higher limit	50.00 Hz
MrC	-	Rated motor current	See the motor nameplate.
MkW	Motor rated power	-	0.4 to 2.2 kWW . See the motor nameplate.
dr 15	0	Torque boost	0 : Manual torque boost (both directions can be configured separately, in Ftb \rightarrow 'Forward boost' and in $\mathrm{rtb} \rightarrow$ 'Reverse boost' 1: Automatic torque boost the drive calculates the voltage to be applied at the start using the motor's parameters)

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
MbF	60.00 Hz	Motor base frequency	50.00 Hz
dr 19	0.50 Hz	Start frequency	0.10 Hz
FrM	60.00 Hz	Maximum frequency	50.00 Hz
CF 93	0	Parameter initialization	1: Initialize all parameters back to factory values (only if required)
CF 79	-	Software version	-
Cn 4	3 kHz	Modulation frequency	5 kHz

Start/Stop command from keyboard and speed setting by analogue input

Parameter configuration

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
0.00	0.00 Hz	Frequency reference	$\mathrm{x} . \mathrm{xxHz}$ (set the frequency reference)
ACC	20.0s	Acceleration time	10.0s
dEC	30.0s	Deceleration time	10.0s
drv	1	Start/Stop control	0: Start/Stop from keyboard
Frq	0	Frequency setting mode	3: Reference will be introduced through analogue input V1 [0..10V] 4: Reference will be introduced through analogue input $12[4 . .20 \mathrm{~mA}]$
Ad 8	0	Stop mode	0 : Stop with deceleration ramp 1: DC brake to stop 2: Free run to stop
Ad 10	0	Start after low voltage.	0 : NO (Drive does not start after power loss). 1: YES (Drive starts after power loss).
Ad 24	0	Use frequency limits	0 : NO (Limits are set by maximum frequency and start frequency) 1: YES (Limits are set by the higher and lower frequency limits)
Ad 25	0.50 Hz	Frequency lower limit	0.10 Hz
Ad 26	50.00 Hz	Frequency higher limit	50.00 Hz
MrC	-	Motor rated current	See the motor nameplate.
MkW	Motor rated power	-	0.4 to 2.2 kW . See the motor nameplate.
MbF	60.00 Hz	Motor base frequency	50.00 Hz
dr 19	0.50 Hz	Start frequency	0.10 Hz
FrM	60.00 Hz	Maximum frequency	50.00 Hz

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
CF 93	0	Parameter initialization	1: Initialize all parameters back to factory values
CF 79	-	Software version	-
Cn 4	3.0 kHz	Modulation frequency	5 kHz
$\ln 7$	10ms	V1 input filter time constant	10ms (Low pass filter for V1)
$\ln 8$	OV	V1 minimum voltage	0.00 V (V1 minimum voltage adjustment)
$\ln 9$	0.00Hz	V1 minimum frequency reference	0.00 Hz (V1 minimum frequency adjustment)
In 10	10 V	V1 maximum voltage	10.00V (V1 maximum voltage adjustment)
In 11	60.00 Hz	V1 maximum frequency reference	50.00 Hz (V1 maximum frequency adjustment)
In 52	10ms	12 input filter time constant	10ms (Low pass filter for V1)
In 53	4.00 mA	12 minimum current	4.00 mA (12 minimum current adjustment)
In 54	0.00Hz	12 minimum frequency reference	0.00 Hz (12 minimum frequency adjustment)
In 55	20.00 mA	12 maximum current	20.00 mA (12 maximum current adjustment)
In 56	60.00 Hz	12 maximum frequency reference	50.00 Hz (12 maximum frequency adjustment)

Connection scheme

Terminal VR: 10V supply.
Terminal V1: Analogue input 0-10V (speed reference).
Terminal I2: Analogue input 4-20mA (speed reference).
Terminal CM: Common terminal OV.

| $\mathrm{A} 1 \mid \mathrm{B} 1$ | C 1 |
| :--- | :--- | :--- |

A2 C_{2}
A0

SD15DTC004A

Start/Stop command from terminals and speed setting by analogue input

Parameter configuration

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
0.00	0.00Hz	Frequency reference	$\mathrm{x} . \mathrm{xHHz}$ (set the frequency reference)
ACC	20.0s	Acceleration time	10.0s
dEC	30.0 s	Deceleration time	10.0s
drv	1	Start/Stop control	1: Start/stop from terminals Fx - Forward o Rx Reverse
Frq	0	Frequency setting mode	3: Reference will be introduced through analogue input V1 [0..10V] 4: Reference will be introduced through analogue input $12[4 . .20 \mathrm{~mA}$]
Ad 8	0	Stop mode	0: Stop with deceleration ramp 1: DC brake to stop 2: Free run to stop
Ad 10	0	Start after low voltage	0: NO (Drive does not start after power loss) 1: YES (Drive starts after power loss)
Ad 24	0	Use frequency limits	0 : NO (Limits are set by maximum frequency and start frequency) 1: YES (Limits are set by the higher and lower frequency limits)
Ad 25	0.50 Hz	Frequency lower limit	0.00 Hz
Ad 26	50.00 Hz	Frequency higher limit	50.00 Hz
MrC	-	Motor rated current	See the motor nameplate.
MkW	Motor rated power	-	0.4 to 2.2 kW . See the motor nameplate.
dr 15	0	Torque boost	0: Manual torque boost (both directions can be configured separately, in Ftb \rightarrow 'Forward boost' and in $\mathrm{rtb} \rightarrow$ 'Reverse boost' 1: Automatic torque boost (the drive calculates the voltage to be applied at the start using the motor's parameters)
MbF	60.00 Hz	Motor frequency	50.00 Hz
dr19	0.50 Hz	Start frequency	0.10 Hz
FrM	60.00 Hz	Maximum frequency	50.00 Hz
CF 93	0	Parameter initialization	1: Initialize all parameters back to factory values (only if required)
CF 79	-	Software version	-
Cn 4	3 kHz	Modulation frequency	5 kHz
$\ln 1$	50.00 Hz	Analog input max. freq	50.00 Hz

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
$\ln 7$	10 ms	V1 input filter time constant	10 ms (Low pass filter for V1)
$\ln 8$	0 V	V1 minimum voltage	0.00 V (V1 minimum voltage adjustment)
$\ln 9$	0.00 Hz	V1 minimum frequency reference	0.00 Hz (V1 minimum frequency adjustment)
$\ln 10$	10 V	V1 maximum voltage	10.00 V (V1 maximum voltage adjustment)
$\operatorname{In} 11$	60.00 Hz	V1 maximum frequency reference In 52	50.00 Hz (V1 maximum frequency adjustment)

Connection scheme

Terminal VR: 10 V supply.
Terminal V1: Analogue input 0-10V (speed reference).
Terminal I2: Analogue input 4-20mA (speed reference).
Terminal CM: Common terminal OV.
Terminal P1: Digital input (Run/Stop).

A1	B1	C1

A2 2 C2
A0

SD15DTC005A

Multi-speed commands (multi-step frequencies) using P5, P6 and P7

Parameter configuration

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
0.00	0.00 Hz	Frequency reference	x.xxHz (set the frequency reference)
ACC	20.0 s	Acceleration time	10.0 s
dEC	30.0 s	Deceleration time	10.0 s
drv	1	Start/Stop control	1: Start/Stop from terminals FX - Forward o Rx- Reverse.
Frq	0	Frequency setting mode	$0:$ Reference will be introduced from keyboard.
Ad 8	0	Stop mode	$0:$ Stop with deceleration ramp $1:$ DC brake to stop $2:$ Free run to stop
Ad 10	0	Start after low voltage	$0:$ NO (Drive does not start after power loss). $1:$ YES (Drive starts after power loss).
Ad 24	0	Use frequency limits	$0:$ NO (Limits are set by maximum frequency and start frequency). $1: ~ Y E S ~(L i m i t s ~ a r e ~ s e t ~ b y ~ t h e ~ h i g h e r ~ a n d ~ l o w e r ~$
frequency limits).			

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
In 67	2	Digital input P3	5: Multi-step speed (low bit)
In 68	3	Digital input P4	6: Multi-step speed (medium bit)
In 69	4	Digital input P5	7: Multi-step speed (high bit)
bA 50	10.00 Hz	Multi-reference speed 1	30.00 Hz (Multi-speed 1)
bA 51	20.00 Hz	Multi-reference speed 2	35.00 Hz (Multi-speed 2)
bA 52	30.00 Hz	Multi-reference speed 3	40.00 Hz (Multi-speed 3)
bA 53	40.00 Hz	Multi-reference speed 4	45.00 Hz (Multi-speed 4)
bA 54	50.00 Hz	Multi-reference speed 5	50.00 Hz (Multi-speed 5)
bA 55	60.00 Hz	Multi-reference speed 6	47.00 Hz (Multi-speed 6)
bA 56	60.00 Hz	Multi-reference speed 7	42.00 Hz (Multi-speed 7)

Depending on the state of inputs P5, P6 y P7, the different configured frequencies can be selected:

PROGRAMMED FREQUENCY	PARAMETER	HIGH SPEED (P7)	MEDIUM SPEED (P6)	LOW SPEED (P5)
50.00 Hz	0.00	0	0	0
30.00 Hz	$\mathrm{St1}$	0	0	1
35.00 Hz	$\mathrm{St2}$	0	1	0
40.00 Hz	$\mathrm{St3}$	0	1	1
45.00 Hz	bA 53	1	0	0
50.00 Hz	bA 54	1	0	1
47.00 Hz	bA 55	1	1	0
42.00 Hz	bA 56	1	1	1

Connection scheme

Terminal P1: Digital input 1 (Run/Stop).
Terminal P3: Digital input 3 (Multi-step speed low bit).
Terminal P4: Digital input 4 (Multi-step speed medium bit).
Terminal P5: Digital input 5 (Multi-step speed high bit).
Terminal CM: Common terminal OV.

Constant pressure control and automatic stop at zero level flow

Parameter configuration

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
ACC	20.0 s	Acceleration time	10.0s
dEC	30.0s	Deceleration time	10.0s
drv	1	Start/Stop control	1: Start/Stop from terminals FX - Forward o Rx Reverse.
Frq	0	Frequency setting mode	0 : Reference will be set by keyboard
Ad 8	0	Stop mode	0 : Stop with deceleration ramp 1: DC brake to stop 2: Free run to stop
Ad 10	0	Start after low voltage	0: NO (Drive does not start after power loss) 1: YES (Drive starts after power loss)
Ad 24	0	Use frequency limits	0 : NO (Limits are set by maximum frequency and start frequency). 1: YES (Limits are set by the higher and lower frequency limits).
Ad 25	0.50 Hz	Frequency lower limit	0.10 Hz
Ad 26	50.00 Hz	Frequency higher limit	50.00 Hz
MrC	-	Motor rated current	See the motor nameplate.
MkW	Motor rated power	-	0.4 to 2.2 kW . See the motor nameplate.
MbF	60.00 Hz	Motor frequency	50.00 Hz

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
dr 19	0.50Hz	Start frequency	0.10Hz
FrM	60.00 Hz	Maximum frequency	50.00 Hz
CF 93	0	Parameter initialization	1: Initialize all parameters back to factory values (only if required)
CF 79	-	Software version	-
Cn 4	3kHz	Modulation frequency	5 kHz
AP 1	0	PID control setting	1: PID control enabled
AP 19	0.0	PID units selection	40.0\% (adjust desired PID setpoint)
AP 20	0	PID reference	0 : PID reference introduced from keyboard
AP 21	0	PID reference setting	0*: 12 current input (feedback of $0 . . .20 \mathrm{~mA}$)
AP 22	50.0	PID feedback setting	50.0\%
AP 23	10.0	PID controller integral time (I gain)	10.00s
AP 24	0.00s	PID controller derivative time (D gain)	0.00s
AP 28	0	PID mode	0:Normal 1: Process
AP 29	60.00 Hz	PID output upper limit frequency	50.00 Hz
AP 30	0.50 Hz	PID output lower limit frequency	0.10 Hz
AP 37	60.0 s	Sleep mode activation delay	40.0 s (delay time before the drive stops)
AP 38	0.00 Hz	Sleep mode activation speed	10.00 Hz (frequency to stop operating and enter in sleep mode)
AP 39	35.0\%	Wake-up level	10.0\% (of the feedback to start back again)
In 52	10 ms	12 input filter time constant	10 ms (low pass filter for V1)
In 53	4.00 mA	12 minimum current	4.00 mA (12 minimum current adjustment)
In 54	0.00Hz	12 minimum frequency reference	0.00 Hz (12 minimum frequency adjustment)
In 55	20.00 mA	12 maximum current	20.00 mA (12 maximum current adjustment)
In 56	60.00 Hz	12 maximum frequency reference	50.00 Hz (I2 maximum frequency adjustment)
In 65	0	Digital input P1	0 : Forward start command (Fx)

Connection scheme

Terminal P1: Digital input 1 (Run/Stop).
Terminal CM: Common terminal OV.
Terminal 24 V : 24 V supply.
Terminal I2: Analogue input 4-20mA (pressure transducers).

Speed control (up/down potentiometer) and Start/Stop commands by terminals

Parameter configuration

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
0.00	0.00 Hz	Frequency reference	$x . x x H z$ (set the frequency reference)
ACC	20.0 s	Acceleration time	10.0 s
dEC	30.0 s	Deceleration time	10.0 s
drv	1	Start/Stop control	$1:$ Start/Stop from terminals FX - Forward o Rx - Reverse
Frq	0	Frequency setting mode	$0:$ Local
Ad 8	0	Stop mode	$0:$ Stop with deceleration ramp $1:$ DC brake to stop 2: Free run to stop
Ad 10	0	Start after low voltage.	$0:$ NO (Drive does not start after power loss) $1: Y E S ~(D r i v e ~ s t a r t s ~ a f t e r ~ p o w e r ~ l o s s) ~$
Ad 24	0	Use frequency limits	$0:$ NO (Limits are set by maximum frequency and start frequency) $1: Y E S$ (Limits are set by the higher and lower frequency limits)
Ad 25	0.50 Hz	Frequency lower limit	0.10 Hz 0

PARAMETER	DEFAULT VALUE	DESCRIPTION	SET VALUE
Ad 26	50.00 Hz	Frequency higher limit	50.00 Hz
MrC	-	Motor rated current	See the motor nameplate.
MkW	Motor rated power	-	0.4 to 2.2 kW . See the motor nameplate.
dr 15	0	Torque boost	0: Manual torque boost (both directions can be configured separately, in Ftb \rightarrow 'Forward boost' and in $\mathrm{rtb} \rightarrow$ 'Reverse boost' 1: Automatic torque boost (the drive calculates the voltage to be applied at the start using the motor's parameters)
MbF	60.00 Hz	Motor frequency	50.00 Hz
dr 19	0.50 Hz	Start frequency	0.10 Hz
FrM	60.00 Hz	Maximum frequency	50.00 Hz
CF 93	0	Parameter initialization	1: Initialize all parameters back to factory values (only if required)
CF 79	-	Software version	-
Cn 4	3.0 kHz	Modulation frequency	5 kHz
Ad 65	0	Up-down operation freq save	0 : NO (does not save last frequency operation point on deceleration or low voltage) 1:YES (saves last frequency operation point on deceleration or low voltage)"
Ad 66	0	Up-down operation mode	0 : Maximum/minimun frequency reference 1: Increase/decrease based on the step frequency (Ad 67) 2: Mixed function of 0 and 1
Ad 67	0.00Hz	Up-down operation step frequency	10.00 Hz (frequency step every up-down)
In 65	0	Digital input P1	0 : Forward start command (Fx)
In 66	1	Digital input P2	15: Frequency increase command (UP)
In 67	2	Digital input P3	15: Frequency decrease command (DOWN)

Connection scheme

Terminal P1: Digital input P1 (Run/Stop).
Terminal P2: Digital input P2 (frequency step UP).
Terminal P3: Digital input P3 (frequency step DOWN).
Terminal CM: Common terminal OV.

24H TECHNICAL ASSISTANCE 365 DAYS A YEAR

FIND YOUR NEAREST DELEGATION POWER-ELECTRONICS.COM/CONTACT/
© invv

[^0]: ${ }^{1}$ Power Electronics recommends the use of Zinc Steel quality 8.8 bolts for internal connections in general, DC and earth connections included.
 ${ }^{2}$ Power Electronics recommends the use of A2-70 stainless bolts for external connections in general, AC connections included.

[^1]: ${ }^{1}$ The wiring of the power terminals must permanently support 600 V and $\mathrm{T}^{\circ}>75^{\circ} \mathrm{C}$

[^2]: ${ }^{1}$ The wiring of the control terminals must permanently support 300 V and $\mathrm{T}^{\circ}>75^{\circ} \mathrm{C}$.

[^3]: ${ }^{1}$ It is possible to set reference frequencies in the initial code of the operation group. The initial code is set to 0.00 . After setting the frequency reference, the set value will be displayed.

[^4]: ${ }^{1}$ Displayed only when one of the $\ln 65-69$ (Multi-function input terminal function setting) is set to 22.
 ${ }^{2}$ The initial value varies depending on the motor capacity setting (MkW).

[^5]: ${ }^{1}$ Displayed only when Ad27 (Frequency jump) is set to 1.

[^6]: ${ }^{1}$ Frequency reference can be changed by configuring the voltage inputs when using the V1 terminal or the VR terminal is connected to the V1 terminal.
 ${ }^{2}$ Displayed when I is selected on the analogue input circuit switch SW2.
 ${ }^{3}$ Displayed when switch SW2 is changed to V.

[^7]: ${ }^{1}$ Este parámetro está disponible cuando el código AP01 está ajustado a 1.

[^8]: ${ }^{1}$ This parameter is available when code AP01 is set to 1 .

[^9]: ${ }^{1}$ Available when $\operatorname{Pr} 40$ (ETH selection) is set to 1 .

[^10]: ${ }^{1}$ CRC is only required for serial communication (R232, RS485). It does not apply for TCP communication.

[^11]: ${ }^{1}$ CRC is only required for serial communication (R232, RS485). It does not apply for TCP communication.

